Skip to main content

Dynamic Interactome of PRC2-EZH1 Complex Using Tandem-Affinity Purification and Quantitative Mass Spectrometry

  • Protocol
  • First Online:
Polycomb Group Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2655))

Abstract

The Polycomb repressive complex 2 (PRC2) is a well-characterized chromatin regulator of transcription programs acting through H3K27me3 deposition. In mammals, there are two main versions of PRC2 complexes: PRC2-EZH2, which is prevalent in cycling cells, and PRC2-EZH1 where EZH1 replaces EZH2 in post-mitotic tissues. Stoichiometry of PRC2 complex is dynamically modulated during cellular differentiation and various stress conditions. Therefore, unraveling unique architecture of PRC2 complexes under specific biological context through comprehensive and quantitative characterization could provide insight into the underlying mechanistic molecular mechanism in regulation of transcription process. In this chapter, we describe an efficient method which combines tandem-affinity purification (TAP) with label-free quantitative proteomics strategy for studying PRC2-EZH1 complex architecture alterations and identifying novel protein regulators in post-mitotic C2C12 skeletal muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu JR, Lee CH, Oksuz O, Stafford JM, Reinberg D (2019) PRC2 is high maintenance. Genes Dev 33(15–16):903–935. https://doi.org/10.1101/gad.325050.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Piunti A, Shilatifard A (2021) The roles of Polycomb repressive complexes in mammalian development and cancer. Nat Rev Mol Cell Bio 22(5):326–345. https://doi.org/10.1038/s41580-021-00341-1

    Article  CAS  Google Scholar 

  3. Marasca F, Bodega B, Orlando V (2018) How polycomb-mediated cell memory deals with a changing environment: variations in PcG complexes and proteins assortment convey plasticity to epigenetic regulation as a response to environment. BioEssays 40(4):e1700137. https://doi.org/10.1002/bies.201700137

    Article  PubMed  Google Scholar 

  4. Cao R, Wang LJ, Wang HB, Xia L, Erdjument-Bromage H, Tempst P et al (2002) Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298(5595):1039–1043. https://doi.org/10.1126/science.1076997

    Article  CAS  PubMed  Google Scholar 

  5. Xu J, Shao Z, Li D, Xie H, Kim W, Huang J et al (2015) Developmental control of polycomb subunit composition by GATA factors mediates a switch to non-canonical functions. Mol Cell 57(2):304–316. https://doi.org/10.1016/j.molcel.2014.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Su SK, Li CY, Lei PJ, Wang X, Zhao QY, Cai Y et al (2016) The EZH1-SUZ12 complex positively regulates the transcription of NF-kappaB target genes through interaction with UXT. J Cell Sci 129(12):2343–2353. https://doi.org/10.1242/jcs.185546

    Article  CAS  PubMed  Google Scholar 

  7. Stojic L, Jasencakova Z, Prezioso C, Stutzer A, Bodega B, Pasini D et al (2011) Chromatin regulated interchange between polycomb repressive complex 2 (PRC2)-Ezh2 and PRC2-Ezh1 complexes controls myogenin activation in skeletal muscle cells. Epigenet Chromatin 4. https://doi.org/10.1186/1756-8935-4-16

  8. Mousavi K, Zare H, Wang AHJ, Sartorelli V (2012) Polycomb protein Ezh1 promotes RNA polymerase II elongation. Mol Cell 45(2):255–262. https://doi.org/10.1016/j.molcel.2011.11.019

    Article  CAS  PubMed  Google Scholar 

  9. Bodega B, Marasca F, Ranzani V, Cherubini A, Della Valle F, Neguembor MV et al (2017) A cytosolic Ezh1 isoform modulates a PRC2-Ezh1 epigenetic adaptive response in postmitotic cells. Nat Struct Mol Biol 24(5):444–452. https://doi.org/10.1038/nsmb.3392

    Article  CAS  PubMed  Google Scholar 

  10. Liu P, Shuaib M, Zhang HM, Nadeef S, Orlando V (2019) Ubiquitin ligases HUWE1 and NEDD4 cooperatively control signal-dependent PRC2-Ezh1 alpha/beta-mediated adaptive stress response pathway in skeletal muscle cells. Epigenet Chromatin 12(1):78. https://doi.org/10.1186/s13072-019-0322-5

    Article  CAS  Google Scholar 

  11. Hauri S, Comoglio F, Seimiya M, Gerstung M, Glatter T, Hansen K et al (2016) A high-density map for navigating the human Polycomb complexome. Cell Rep 17(2):583–595. https://doi.org/10.1016/j.celrep.2016.08.096

    Article  CAS  PubMed  Google Scholar 

  12. Kloet SL, Makowski MM, Baymaz HI, van Voorthuijsen L, Karemaker ID, Santanach A et al (2016) The dynamic interactome and genomic targets of Polycomb complexes during stem-cell differentiation. Nat Struct Mol Biol 23(7):682–690. https://doi.org/10.1038/nsmb.3248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oliviero G, Brien GL, Waston A, Streubel G, Jerman E, Andrews D et al (2016) Dynamic protein interactions of the Polycomb repressive complex 2 during differentiation of pluripotent cells. Mol Cell Proteomics 15(11):3450–3460. https://doi.org/10.1074/mcp.M116.062240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schubert OT, Rost HL, Collins BC, Rosenberger G, Aebersold R (2017) Quantitative proteomics: challenges and opportunities in basic and applied research. Nat Protoc 12(7):1289–1294. https://doi.org/10.1038/nprot.2017.040

    Article  CAS  PubMed  Google Scholar 

  15. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386. https://doi.org/10.1074/mcp.m200025-mcp200

    Article  CAS  PubMed  Google Scholar 

  16. Ludwig C, Gillet L, Rosenberger G, Amon S, Collins B, Aebersold R (2018) Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol 14(8):e8126. https://doi.org/10.15252/msb.20178126

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bekker-Jensen DB, Bernhardt OM, Hogrebe A, Martinez-Val A, Verbeke L, Gandhi T et al (2020) Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries. Nat Commun 11(1):787. https://doi.org/10.1038/s41467-020-14609-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang HM, Bensaddek D (2021) Narrow precursor mass range for DIA-MS enhances protein identification and quantification in arabidopsis. Life-Basel 11(9):982. https://doi.org/10.3390/life11090982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bludau I, Aebersold R (2020) Proteomic and interactomic insights into the molecular basis of cell functional diversity. Nat Rev Mol Cell Bio 21(6):327–340. https://doi.org/10.1038/s41580-020-0231-2

    Article  CAS  Google Scholar 

  20. Collins BC, Gillet LC, Rosenberger G, Rost HL, Vichalkovski A, Gstaiger M et al (2013) Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nat Methods 10(12):1246–1253. https://doi.org/10.1038/nmeth.2703

    Article  CAS  PubMed  Google Scholar 

  21. Lambert JP, Ivosev G, Couzens AL, Larsen B, Taipale M, Lin ZY et al (2013) Mapping differential interactomes by affinity purification coupled with data-independent mass spectrometry acquisition. Nat Methods 10(12):1239–1245. https://doi.org/10.1038/nmeth.2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Liu or Valerio Orlando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, P., Zhang, H., Della Valle, F., Orlando, V. (2023). Dynamic Interactome of PRC2-EZH1 Complex Using Tandem-Affinity Purification and Quantitative Mass Spectrometry. In: Lanzuolo, C., Marasca, F. (eds) Polycomb Group Proteins. Methods in Molecular Biology, vol 2655. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3143-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3143-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3142-3

  • Online ISBN: 978-1-0716-3143-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics