Skip to main content

Observing Membrane and Cell Adhesion via Reflection Interference Contrast Microscopy

  • Protocol
  • First Online:
The Immune Synapse

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2654))

  • 948 Accesses

Abstract

Reflection interference contrast microscopy (RICM) is an optical microscopy technique ideally suited for imaging adhesion. While RICM (and the closely related interference reflection microscopy (IRM)) has been extensively used qualitatively or semiquantitatively to image cells, including immune cells, it can also be used quantitatively to measure membrane to surface distance, especially for model membranes. Here, we present a protocol for RICM and IRM imaging and the details of semiquantitative and quantitative analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Curtis ASG (1962) Cell contact and adhesion. Biol Rev Camb Philos Soc 37:82–129. https://doi.org/10.1111/j.1469-185X.1962.tb01605.x

    Article  CAS  PubMed  Google Scholar 

  2. Curtis ASG (1964) The mechanism of adhesion of cells to glass. J Cell Biol 20(2):199–215. https://doi.org/10.1083/jcb.20.2.199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Verschueren H (1985) Interference reflection microscopy in cell biology: methodology and applications. J Cell Sci 75(1):279–301. https://doi.org/10.1242/jcs.75.1.279

    Article  CAS  PubMed  Google Scholar 

  4. Limozin L, Sengupta K (2009) Quantitative reflection interference contrast microscopy (RICM) in soft matter and cell adhesion. Chemphyschem 10(16):2752–2768. https://doi.org/10.1002/cphc.200900601

    Article  CAS  PubMed  Google Scholar 

  5. Bereiter-Hahn J, Fox CH, Thorell BB (1979) Quantitative reflection contrast microscopy of living cells. J Cell Biol 82(3):767–779. https://doi.org/10.1083/jcb.82.3.767

    Article  CAS  PubMed  Google Scholar 

  6. Gingell D, Todd I (1979) Interference reflection microscopy. A quantitative theory for image interpretation and its application to cell-substratum separation measurement. Biophys J 26(3):507–526. https://doi.org/10.1016/S0006-3495(79)85268-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) Immunological synapse: a molecular machine controlling T cell activation. Science 285(5425):221–227. https://doi.org/10.1126/science.285.5425.221

    Article  CAS  PubMed  Google Scholar 

  8. Biswas KH, Hartman KL, Yu CH, Harrison OJ, Hang S, Smith AW, Huang WYC, Lin WC, Guo Z, Padmanabhan A, Troyanovsky SM, Dustin M, Shapiro L, Honig B, Zaidel-Bara R, Groves JT (2015) E-cadherin junction formation involves an active kinetic nucleation process. Proc Natl Acad Sci 112(35):10932–10937. https://doi.org/10.1073/pnas.1513775112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zilker A, Ziegler M, Sackmann E (1992) Spectral analysis of erythrocyte flickering in the 0.3–4 μm−1 regime by microinterferometry combined with fast image processing. Phys Rev A 46(12):7998–8001. https://doi.org/10.1103/PhysRevA.46.7998

    Article  CAS  PubMed  Google Scholar 

  10. Dustin ML, Zhu CT (2006) Cells like a firm molecular handshake. Proc Natl Acad Sci U S A 103(12):4335–4336. https://doi.org/10.1073/pnas.0600899103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Radler J, Sackmann E (1993) Imaging optical thickness and separation distances of phospholipid-vesicles at solid-surfaces. J Phys II 3:727–748. https://doi.org/10.1051/jp2:1993163

    Article  Google Scholar 

  12. Ploem JS (1975) Reflection-contrast microscopy as a tool for investigation of the attachment of living cells to a glass surface, in Mononuclear Phagocytes in Immunity (van Furth, R., ed.), Blackwell, Oxford, pp. 405–421

    Google Scholar 

  13. Kühner M, Sackmann E (1996) Ultrathin hydrated dextran films grafted on glass: preparation and characterization of structural, viscous, and elastic properties by quantitative microinterferometry. Langmuir 12(20):4866–4876. https://doi.org/10.1021/la960282+

    Article  Google Scholar 

  14. Albersdörfer A, Feder T, Sackmann E (1997) Adhesion-induced domain formation by interplay of long-range repulsion and short-range attraction force: a model membrane study. Biophys J 73:245–257. https://doi.org/10.1016/S0006-3495(97)78065-2

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wiegand G, Neumaier KR, Sackmann E (1998) Microinterferometry: three-dimensional reconstruction of surface microtopography for thin-film and wetting studies by reflection interference contrast microscopy (RICM). Appl Opt 37(29):6892–6905. https://doi.org/10.1364/AO.37.006892

    Article  CAS  PubMed  Google Scholar 

  16. Feder TJ, Weissmüller G, Žekš B, Sackmann E (1995) Spreading of giant vesicles on moderately adhesive substrates by fingering: a reflection interference contrast microscopy study. Phys Rev E 51(4):3427. https://doi.org/10.1103/PhysRevE.51.3427

    Article  CAS  Google Scholar 

  17. Schilling JJ, Sengupta K, Goennenwein S, Bausch AR, Sackmann E (2004) Absolute interfacial distance measurements by dual-wavelength reflection interference contrast microscopy. Phys Rev E 69(2 Pt 1):21901. https://doi.org/10.1103/PhysRevE.69.021901

    Article  CAS  Google Scholar 

  18. Sengupta K, Schilling J, Marx S, Fischer M, Bacher A, Sackmann E (2003) Mimicking tissue surfaces by supported membrane coupled ultrathin layer of hyaluronic acid. Langmuir 19(5):1775–1781. https://doi.org/10.1021/la026146o

    Article  CAS  Google Scholar 

  19. Monzel C, Fenz SF, Merkel R, Sengupta K (2009) Probing biomembrane dynamics by dual-wavelengthn reflection interference contrast microscopy. ChemPhysChem 10(16):2828–2838. https://doi.org/10.1002/cphc.200900645

    Article  CAS  PubMed  Google Scholar 

  20. Monzel C, Fenz SF, Giesen M, Merkel R, Sengupta K (2012) Mapping fluctuations in biomembranes adhered to micropatterns. Soft Matter 8(22):6128–6138. https://doi.org/10.1039/C2SM07458C

    Article  CAS  Google Scholar 

  21. Sengupta K, Limozin L (2010) Adhesion of soft membranes controlled by tension and interfacial polymers. Phys Rev Lett 104(8):88–101. https://doi.org/10.1103/PhysRevLett.104.088101

    Article  CAS  Google Scholar 

  22. Schmidt D, Monzel C, Bihr T, Merke R, Seifert U, Sengupta K, Smith AS (2014) Signature of a nonharmonic potential as revealed from a consistent shape and fluctuation analysis of an adherent membrane. Phys Rev X 4(2):021023. https://doi.org/10.1103/PhysRevX.4.021023

    Article  CAS  Google Scholar 

  23. Limozin L, Sengupta K (2007) Modulation of vesicle adhesion and spreading kinetics by hyaluronan cushions. Biophys J 93(9):3300–3313. https://doi.org/10.1529/biophysj.107.105544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith AS, Fenz SF, Sengupta K (2010) Inferring spatial organization of bonds within adhesion clusters by exploiting fluctuations of soft interfaces. Eur Lett 89(2):28003. https://doi.org/10.1209/0295-5075/89/28003

    Article  CAS  Google Scholar 

  25. Fenz S, Bihr T, Merkel R, Seifert U, Sengupta K, Smith AS (2011) Switching from ultraweak to strong adhesion. Adv Mater 23(22–23):2622–2626. https://doi.org/10.1002/adma.201004097

    Article  CAS  PubMed  Google Scholar 

  26. Smith AS, Sengupta K, Goennenwein S, Seifert U, Sackmann E (2008) Force-induced growth of adhesion domains is controlled by receptor mobility. Proc Natl Acad Sci 105(19):6906–6911. https://doi.org/10.1073/pnas.0801706105

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sengupta K, Aranda-Espinoza H, Smith L, Janmey P, Hammer D (2006) Spreading of neutrophils: from activation to migration. Biophys J 91(12):4638–4648. https://doi.org/10.1529/biophysj.105.080382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Norman L, Sengupta K, Aranda-Espinoza Helim H (2011) Blebbing dynamics during endothelial cell spreading. Eur J Cell Biol 90(1):37–48. https://doi.org/10.1016/j.ejcb.2010.09.013

    Article  CAS  PubMed  Google Scholar 

  29. Lee D, Fong KP, King MR, Brass LF, Hammer DA (2012) Differential dynamics of platelet contact and spreading. Biophys J 102(3):472–482. https://doi.org/10.1016/j.bpj.2011.10.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zidovska A, Sackmann E (2006) Brownian motion of nucleated cell envelopes impedes adhesion. Phys Rev Lett 96:48103. https://doi.org/10.1103/PhysRevLett.96.048103

    Article  CAS  Google Scholar 

  31. Pierres A, Benoliel AM, Touchard D, Bongrand P (2008) How cells tiptoe on adhesive surfaces before sticking. Biophys J 94(10):4114–4122. https://doi.org/10.1529/biophysj.107.125278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Biswas A, Alex A, Sinha B (2017) Mapping cell membrane fluctuations reveals their active regulation and transient heterogeneities. Biophys J 113(8):1768–1781. https://doi.org/10.1016/j.bpj.2017.08.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dejardin MJ, Hemmerle A, Sadoun A, Hamon Y, Puech PH, Sengupta K, Limozin L (2018) Lamellipod reconstruction by three-dimensional reflection interference contrast nanoscopy (3D-RICN). Nano Lett 18(10):6544–6550. https://doi.org/10.1021/acs.nanolett.8b03134

    Article  CAS  PubMed  Google Scholar 

  34. Monzel C, Sengupta K (2016) Measuring shape fluctuations in biological membranes. J Phys D Appl Phy 49(24):243,002. https://doi.org/10.1088/0022-3727/49/24/243002

    Article  CAS  Google Scholar 

  35. Dimova R, Marques C (2019) The giant vesicle book. CRC Press/Taylor & Francis Group, Boca Raton. https://doi.org/10.1201/9781315152516

    Book  Google Scholar 

  36. Weber I (2003) Reflection interference contrast microscopy, in Methods in Enzymology, Academic Press, 361(34–47) ISSN 0076-6879, ISBN 9780121822644, Elsevier, https://doi.org/10.1016/S0076-6879(03)61004-9

  37. Fenz SF, Merkel R, Sengupta K (2009) Diffusion and intermembrane distance: case study of avidin and E-cadherin mediated adhesion. Langmuir 25(2):1074–1085. https://doi.org/10.1021/la803227s

    Article  CAS  PubMed  Google Scholar 

  38. Carbone CB, Kern N, Fernandes RA, Hui E, Su X, Garcia KC, Vale RD (2017) In vitro reconstitution of T cell receptor-mediated segregation of the CD45 phosphatase. Proc Natl Acad Sci 114(44):e9338–e9345. https://doi.org/10.1073/pnas.1710358114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fenz SF, Bihr T, Schmidt D, Merkel R, Seifert U, Sengupta K, Smith AS (2017) Membrane fluctuations mediate lateral interaction between cadherin bonds. Nat Phys 13:906–913. https://doi.org/10.1038/nphys4138

    Article  CAS  Google Scholar 

  40. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Cardona A (2012) Fiji:an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  41. Sengupta K, Smith AS (2019) In: Bassereau P, Sens P (eds) Adhesion of biological membranes in physics of biological membranes. Springer, pp 499–535. https://doi.org/10.1007/978-3-030-00630-3

    Chapter  Google Scholar 

  42. Sackmann E, Smith AS (2014) Physics of cell adhesion: some lessons from cell-mimetic systems. Soft Matter 10:1644–1659. https://doi.org/10.1039/C3SM51910D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Blackwell R, Hemmerle A, Baer A, Späth M, Peukert W, Parsons D, Sengupta K, Smith AS (2021) On the control of dispersion interactions between biological membranes and protein coated biointerfaces. J Colloid Interface Sci 598:464–473. https://doi.org/10.1016/j.jcis.2021.02.078

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana-Sunčana Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Abdelrahman, A., Smith, AS., Sengupta, K. (2023). Observing Membrane and Cell Adhesion via Reflection Interference Contrast Microscopy. In: Baldari, C.T., Dustin, M.L. (eds) The Immune Synapse. Methods in Molecular Biology, vol 2654. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3135-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3135-5_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3134-8

  • Online ISBN: 978-1-0716-3135-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics