Skip to main content

CRISPR/Cas9 Technology for Potato Functional Genomics and Breeding

  • Protocol
  • First Online:
Plant Genome Engineering

Abstract

Cultivated potato (Solanum tuberosum L.) is one of the most important staple food crops worldwide. Its tetraploid and highly heterozygous nature poses a great challenge to its basic research and trait improvement through traditional mutagenesis and/or crossbreeding. The establishment of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) as a gene editing tool has allowed the alteration of specific gene sequences and their concomitant gene function, providing powerful technology for potato gene functional analysis and improvement of elite cultivars. This technology relies on a short RNA molecule called single guide RNA (sgRNA) that directs the Cas9 nuclease to induce a site-specific double-stranded break (DSB). Further, repair of the DSB by the error-prone non-homologous end joining (NHEJ) mechanism leads to the introduction of targeted mutations, which can be used to produce the loss of function of specific gene(s). In this chapter, we describe experimental procedures to apply the CRISPR/Cas9 technology for potato genome editing. First, we provide strategies for target selection and sgRNA design and describe a Golden Gate-based cloning system to obtain a sgRNA/Cas9-encoding binary vector. We also describe an optimized protocol for ribonucleoprotein (RNP) complex assembly. The binary vector can be used for both Agrobacterium-mediated transformation and transient expression in potato protoplasts, while the RNP complexes are intended to obtain edited potato lines through protoplast transfection and plant regeneration. Finally, we describe procedures to identify the gene-edited potato lines. The methods described here are suitable for potato gene functional analysis and breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Holme IB, Gregersen PL, Brinch-Pedersen H (2019) Induced genetic variation in crop plants by random or targeted mutagenesis: convergence and differences. Front Plant Sci 10:1468

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schaart JG, van de Wiel CCM, Smulders MJM (2021) Genome editing of polyploid crops: prospects, achievements and bottlenecks. Transgenic Res 30(4):337–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nadakuduti SS, Buell CR, Voytas DF et al (2018) Genome editing for crop improvement – applications in clonally propagated polyploids with a focus on potato (Solanum tuberosum L.). Front Plant Sci 9:1–11

    Article  Google Scholar 

  4. Nahirñak V, Almasia NI, González MN et al (2022) State of the art of genetic engineering in potato: from the first report to its future potential. Front Plant Sci 12:3181

    Article  Google Scholar 

  5. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA – guided. Science (80- ) 337:816–822

    Article  CAS  Google Scholar 

  6. Jiang F, Doudna JA (2017) CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529

    Article  CAS  PubMed  Google Scholar 

  7. Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56:1–14

    CAS  PubMed  Google Scholar 

  8. Lee K, Zhang Y, Kleinstiver BP et al (2019) Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnol J 17:362–372

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Tu M, Wang Y et al (2021) Whole-genome sequencing reveals rare off-target mutations in CRISPR/Cas9-edited grapevine. Hortic Res 8:114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Q, Xing HL, Wang ZP et al (2018) Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Mol Biol 96:445–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Modrzejewski D, Hartung F, Lehnert H et al (2020) Which factors affect the occurrence of off-target effects caused by the use of CRISPR/Cas: a systematic review in plants. Front Plant Sci 11:1838

    Article  Google Scholar 

  12. Eş I, Gavahian M, Marti-Quijal FJ et al (2019) The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: current status, future perspectives, and associated challenges. Biotechnol Adv 37:410–421

    Article  PubMed  Google Scholar 

  13. Feng C, Su H, Bai H et al (2018) High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnol J 16:1848–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nekrasov V, Staskawicz B, Weigel D et al (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693

    Article  CAS  PubMed  Google Scholar 

  15. Belhaj K, Chaparro-Garcia A, Kamoun S et al (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39

    Article  PubMed  PubMed Central  Google Scholar 

  16. Weber E, Engler C, Gruetzner R et al (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One 6:e16765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Block M (1988) Genotype-independent leaf disc transformation of potato (Solanum tuberosum) using agrobacterium tumefaciens. Theor Appl Genet 76:767–774

    Article  PubMed  Google Scholar 

  18. Bánfalvi Z, Csákvári E, Villányi V et al (2020) Generation of transgene-free PDS mutants in potato by Agrobacterium-mediated transformation. BMC Biotechnol 20:25

    Article  PubMed  PubMed Central  Google Scholar 

  19. Butler NM, Atkins PA, Voytas DF et al (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS One 10:1–12

    Article  Google Scholar 

  20. Butler NM, Baltes NJ, Voytas DF et al (2016) Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci 7:1–13

    Article  Google Scholar 

  21. Enciso-Rodriguez F, Manrique-Carpintero NC, Nadakuduti SS et al (2019) Overcoming self-incompatibility in diploid potato using CRISPR-Cas9. Front Plant Sci 10:376

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kieu NP, Lenman M, Wang ES et al (2021) Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Sci Rep 11:4487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tuncel A, Corbin KR, Ahn-Jarvis J et al (2019) Cas9-mediated mutagenesis of potato starch-branching enzymes generates a range of tuber starch phenotypes. Plant Biotechnol J 17:2259–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Veillet F, Chauvin L, Kermarrec M-P et al (2019) The Solanum tuberosum GBSSI gene: a target for assessing gene and base editing in tetraploid potato. Plant Cell Rep 38:1065–1080

    Article  CAS  PubMed  Google Scholar 

  25. Zhou X, Zha M, Huang J et al (2017) StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato. J Exp Bot 68:1265–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Andersson M, Turesson H, Nicolia A et al (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36:117–128

    Article  CAS  PubMed  Google Scholar 

  27. Andersson M, Turesson H, Olsson N et al (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164:378–384

    Article  CAS  PubMed  Google Scholar 

  28. Johansen IE, Liu Y, Jørgensen B et al (2019) High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato. Sci Rep 9:17715

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhao X, Jayarathna S, Turesson H et al (2021) Amylose starch with no detectable branching developed through DNA-free CRISPR-Cas9 mediated mutagenesis of two starch branching enzymes in potato. Sci Rep 11:4311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. González MN, Massa GA, Andersson M et al (2020) Reduced enzymatic browning in potato tubers by specific editing of a polyphenol oxidase gene via ribonucleoprotein complexes delivery of the CRISPR/Cas9 system. Front Plant Sci 10:1–12

    Article  Google Scholar 

  31. González MN, Massa GA, Andersson M et al (2021) Comparative potato genome editing: agrobacterium tumefaciens-mediated transformation and protoplasts transfection delivery of CRISPR/Cas9 components directed to StPPO2 gene. Plant Cell Tissue Organ Cult 145(2):291–305

    Article  Google Scholar 

  32. Nicolia A, Fält A-S, Hofvander P et al (2021) Protoplast-based method for genome editing in tetraploid potato. In: Tripodi P (ed) Crop breeding. Methods in molecular biology, vol 2264. Humana, New York

    Google Scholar 

  33. Beaujean A, Sangwan RS, Lecardonnel A et al (1998) Agrobacterium-mediated transformation of three economically important potato cultivars using sliced internodal explants: an efficient protocol of transformation. J Exp Bot 49:1589–1595

    Article  CAS  Google Scholar 

  34. Fu Y, Sander JD, Reyon D et al (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sugano SS, Nishihama R, Shirakawa M et al (2018) Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLoS One 13:e0205117

    Article  PubMed  PubMed Central  Google Scholar 

  36. Doench JG, Hartenian E, Graham DB et al (2014) Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nat Biotechnol 32:1262–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Housden BE, Valvezan AJ, Kelley C et al (2015) Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi. Sci Signal 8:rs9

    Article  PubMed  PubMed Central  Google Scholar 

  38. Haeussler M, Schönig K, Eckert H et al (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liang G, Zhang H, Lou D et al (2016) Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Sci Rep 6:21451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bae S, Kweon J, Kim HS et al (2014) Microhomology-based choice of Cas9 nuclease target sites. Nat Methods 11:705–706

    Article  CAS  PubMed  Google Scholar 

  41. Ma X, Zhu Q, Chen Y et al (2016) CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9:961–974

    Article  CAS  PubMed  Google Scholar 

  42. Xie X, Ma X, Zhu Q et al (2017) CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Mol Plant 10:1246–1249

    Article  CAS  PubMed  Google Scholar 

  43. Kumlehn J, Pietralla J, Hensel G et al (2018) The CRISPR/Cas revolution continues: from efficient gene editing for crop breeding to plant synthetic biology. J Integr Plant Biol 60:1127–1153

    Article  CAS  PubMed  Google Scholar 

  44. Bellaousov S, Reuter JS, Seetin MG et al (2013) RNAstructure: web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res 41:W471–W474

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schindele P, Wolter F, Puchta H (2020) CRISPR guide RNA design guidelines for efficient genome editing. In: Heinlein M (ed) RNA tagging. Methods in molecular biology, vol 2166. Humana, New York

    Google Scholar 

  46. Naim F, Shand K, Hayashi S et al (2020) Are the current gRNA ranking prediction algorithms useful for genome editing in plants? PLoS One 15:e0227994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brooks C, Nekrasov V, Lippman ZB et al (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-Associated9 system. Plant Physiol 166:1292–1297

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nekrasov V, Wang C, Win J et al (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7:482

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rodríguez-Leal D, Lemmon ZH, Man J et al (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480.e8

    Article  PubMed  Google Scholar 

  50. Jacobs TB, LaFayette PR, Schmitz RJ et al (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:1–10

    Article  CAS  Google Scholar 

  51. Zhang D, Hussain A, Manghwar H et al (2020) Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective. Plant Biotechnol J 18:1651–1669

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang Y, Iaffaldano B, Qi Y (2021) CRISPR ribonucleoprotein-mediated genetic engineering in plants. Plant Commun 2(2):100168

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ramlee MK, Yan T, Cheung AMS et al (2015) High-throughput genotyping of CRISPR/Cas9-mediated mutants using fluorescent PCR-capillary gel electrophoresis. Sci Rep 5:15587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Nicolás González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

González, M.N. et al. (2023). CRISPR/Cas9 Technology for Potato Functional Genomics and Breeding. In: Yang, B., Harwood, W., Que, Q. (eds) Plant Genome Engineering. Methods in Molecular Biology, vol 2653. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3131-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3131-7_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3130-0

  • Online ISBN: 978-1-0716-3131-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics