Skip to main content

Imaging Somatosensory Cortex in Rodents

  • Protocol
  • First Online:
Somatosensory Research Methods

Part of the book series: Neuromethods ((NM,volume 196))

Abstract

The rodent somatosensory cortex has been investigated using a range of electrophysiological techniques, from intracellular recordings to electroencephalography. Nonetheless, their accessible location on the dorsal surface of the brain has more recently made the somatosensory areas popular models for the imaging-based investigation of cortical function. In this chapter, we will outline the general principles of two-photon microscopy applied to the functional study of the rodent somatosensory cortex. This technique allows recording the activity of hundreds of individual neurons simultaneously, with single-cell precision and while knowing their relative positions in the brain. We will place particular emphasis on long-term calcium imaging procedures on awake behaving mice and will introduce advantages and limitations of this technique. Our specific aim is to provide the reader with useful information regarding equipment and experimental procedures, from the choice of the calcium indicator to the post hoc analysis of imaging time series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73(5):862–885

    Article  CAS  PubMed  Google Scholar 

  2. Diamond ME, von Heimendahl M, Arabzadeh E (2008) Whisker-mediated texture discrimination. PLoS Biol 6(8):e220

    Article  PubMed  PubMed Central  Google Scholar 

  3. Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex: the description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17(2):205–242

    Article  CAS  PubMed  Google Scholar 

  4. Feldmeyer D, Brecht M, Helmchen F, Petersen CC, Poulet JF, Staiger JF et al (2013) Barrel cortex function. Prog Neurobiol 103:3–27

    Article  PubMed  Google Scholar 

  5. Lefort S, Tomm C, Sarria JCF, Petersen CC (2009) The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61(2):301–316

    Article  CAS  PubMed  Google Scholar 

  6. Chen JL, Carta S, Soldado-Magraner J, Schneider BL, Helmchen F (2013) Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex. Nature 499(7458):336–340

    Article  CAS  PubMed  Google Scholar 

  7. Ayaz A, Stäuble A, Hamada M, Wulf MA, Saleem AB, Helmchen F (2019) Layer-specific integration of locomotion and sensory information in mouse barrel cortex. Nat Commun 10(1):1–14

    Article  CAS  Google Scholar 

  8. Huber D, Gutnisky DA, Peron S, O’connor DH, Wiegert JS, Tian L et al (2012) Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484(7395):473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guo ZV, Li N, Huber D, Ophir E, Gutnisky D, Ting JT et al (2014) Flow of cortical activity underlying a tactile decision in mice. Neuron 81(1):179–194

    Article  CAS  PubMed  Google Scholar 

  10. Sofroniew NJ, Vlasov YA, Hires SA, Freeman J, Svoboda K (2015) Neural coding in barrel cortex during whisker-guided locomotion. elife 4:e12559

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mayrhofer JM, Skreb V, von der Behrens W, Musall S, Weber B, Haiss F (2013) Novel two-alternative forced choice paradigm for bilateral vibrotactile whisker frequency discrimination in head-fixed mice and rats. J Neurophysiol 109(1):273–284

    Article  PubMed  Google Scholar 

  12. Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci 100(12):7319–7324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sato TR, Gray NW, Mainen ZF, Svoboda K (2007) The functional microarchitecture of the mouse barrel cortex. PLoS Biol 5(7):e189

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ohki K, Chung S, Ch'ng YH, Kara P, Reid RC (2005) Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433(7026):597–603

    Article  CAS  PubMed  Google Scholar 

  15. Rothschild G, Nelken I, Mizrahi A (2010) Functional organization and population dynamics in the mouse primary auditory cortex. Nat Neurosci 13(3):353

    Article  CAS  PubMed  Google Scholar 

  16. Bonin V, Histed MH, Yurgenson S, Reid RC (2011) Local diversity and fine-scale organization of receptive fields in mouse visual cortex. J Neurosci 31(50):18506–18521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Panniello M, King AJ, Dahmen JC, Walker KM (2018) Local and global spatial organization of interaural level difference and frequency preferences in auditory cortex. Cereb Cortex 28(1):350–369

    Article  PubMed  Google Scholar 

  18. Gaucher Q, Panniello M, Ivanov AZ, Dahmen JC, King AJ, Walker KM (2020) Complexity of frequency receptive fields predicts tonotopic variability across species. elife 9:e53462

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kerr JN, De Kock CP, Greenberg DS, Bruno RM, Sakmann B, Helmchen F (2007) Spatial organization of neuronal population responses in layer 2/3 of rat barrel cortex. J Neurosci 27(48):13316–13328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martini FJ, Molano-Mazón M, Maravall M (2017) Interspersed distribution of selectivity to kinematic stimulus features in supragranular layers of mouse barrel cortex. Cereb Cortex 27(7):3782–3789

    Article  PubMed  Google Scholar 

  21. Peron SP, Freeman J, Iyer V, Guo C, Svoboda K (2015) A cellular resolution map of barrel cortex activity during tactile behavior. Neuron 86(3):783–799

    Article  CAS  PubMed  Google Scholar 

  22. Chen JL, Margolis DJ, Stankov A, Sumanovski LT, Schneider BL, Helmchen F (2015) Pathway-specific reorganization of projection neurons in somatosensory cortex during learning. Nat Neurosci 18(8):1101–1108

    Article  PubMed  Google Scholar 

  23. Zhang M, Kwon SE, Ben-Johny M, O’Connor DH, Issa JB (2020) Spectral hallmark of auditory-tactile interactions in the mouse somatosensory cortex. Commun Biol 3(1):1–17

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bale MR, Bitzidou M, Giusto E, Kinghorn PF, Maravall M (2021) Sequence learning induces selectivity to multiple task parameters in mouse somatosensory cortex. Curr Biol 31(3):473–485. https://doi.org/10.1016/j.cub.2020.10.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Banerjee A, Parente G, Teutsch J, Lewis C, Voigt FF, Helmchen F (2020) Value-guided remapping of sensory cortex by lateral orbitofrontal cortex. Nature 585(7824):245–250

    Article  CAS  PubMed  Google Scholar 

  26. Kwon SE, Yang H, Minamisawa G, O’Connor DH (2016) Sensory and decision-related activity propagate in a cortical feedback loop during touch perception. Nat Neurosci 19(9):1243–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brecht M, Sakmann B (2002) Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex. J Physiol 543(1):49–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Henze DA, Borhegyi Z, Csicsvari J, Mamiya A, Harris KD, Buzsaki G (2000) Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J Neurophysiol 84(1):390–400

    Article  CAS  PubMed  Google Scholar 

  29. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76

    Article  CAS  PubMed  Google Scholar 

  30. Patterson GH, Piston DW (2000) Photobleaching in two-photon excitation microscopy. Biophys J 78(4):2159–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Denk W, Svoboda K (1997) Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18(3):351–357

    Article  CAS  PubMed  Google Scholar 

  32. Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50(6):823–839

    Article  CAS  PubMed  Google Scholar 

  33. Schultz SR, Copeland CS, Foust AJ, Quicke P, Schuck R (2016) Advances in two-photon scanning and scanless microscopy technologies for functional neural circuit imaging. Proc IEEE 105(1):139–157

    Article  Google Scholar 

  34. Brondi M, Moroni M, Vecchia D, Molano-Mazón M, Panzeri S, Fellin T (2020) High-accuracy detection of neuronal ensemble activity in two-photon functional microscopy using smart line scanning. Cell Rep 30(8):2567–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grewe BF, Voigt FF, van’t Hoff M, Helmchen F (2011) Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens. Biomed Opt Express 2(7):2035–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Katona G, Szalay G, Maák P, Kaszás A, Veress M, Hillier D et al (2012) Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nat Methods 9(2):201–208

    Article  CAS  PubMed  Google Scholar 

  37. Chong EZ, Panniello M, Barreiros I, Kohl MM, Booth MJ (2019) Quasi-simultaneous multiplane calcium imaging of neuronal circuits. Biomed Opt Express 10(1):267–282

    Article  CAS  PubMed  Google Scholar 

  38. Sofroniew NJ, Flickinger D, King J, Svoboda K (2016) A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. elife 5:e14472

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tsien RY, Adams SR (1989) U.S. Patent No. 4,806,604. Washington, DC: U.S. Patent and Trademark Office

    Google Scholar 

  40. Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD (2008) Chemical calcium indicators. Methods 46(3):143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645):882–887

    Article  CAS  PubMed  Google Scholar 

  42. Dana H, Sun Y, Mohar B, Hulse BK, Kerlin AM, Hasseman JP et al (2019) High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat Methods 16(7):649–657

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Rozsa M, Liang Y et al (2021) Fast and sensitive GCaMP calcium indicators for imaging neural populations. bioRxiv:11.08.467793

    Google Scholar 

  44. Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP et al (2016) Sensitive red protein calcium indicators for imaging neural activity. elife 5:e12727

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tischbirek CH, Noda T, Tohmi M, Birkner A, Nelken I, Konnerth A (2019) In vivo functional mapping of a cortical column at single-neuron resolution. Cell Rep 27(5):1319–1326

    Article  CAS  PubMed  Google Scholar 

  46. Murayama M, Larkum ME (2009) In vivo dendritic calcium imaging with a fiberoptic periscope system. Nat Protoc 4(10):1551–1559. https://doi.org/10.1038/nprot.2009.142

    Article  CAS  PubMed  Google Scholar 

  47. Andermann ML, Gilfoy NB, Goldey GJ, Sachdev RN, Wölfel M, McCormick DA et al (2013) Chronic cellular imaging of entire cortical columns in awake mice using microprisms. Neuron 80(4):900–913

    Article  CAS  PubMed  Google Scholar 

  48. Antonini A, Sattin A, Moroni M, Bovetti S, Moretti C, Succol F et al (2020) Extended field-of-view ultrathin microendoscopes for high-resolution two-photon imaging with minimal invasiveness in awake mice. elife 9:e58882. https://doi.org/10.7554/eLife.58882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dombeck DA, Harvey CD, Tian L, Looger LL, Tank DW (2010) Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci 13(11):1433–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Klioutchnikov A, Wallace DJ, Frosz MH, Zeltner R, Sawinski J, Pawlak V et al (2020) Three-photon head-mounted microscope for imaging deep cortical layers in freely moving rats. Nat Methods 17(5):509–513

    Article  CAS  PubMed  Google Scholar 

  51. Villette V, Chavarha M, Dimov IK, Bradley J, Pradhan L, Mathieu B et al (2019) Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice. Cell 179(7):1590–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Watakabe A, Ohtsuka M, Kinoshita M, Takaji M, Isa K, Mizukami H et al (2015) Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci Res 93:144–157

    Article  PubMed  Google Scholar 

  53. Nathanson JL, Yanagawa Y, Obata K, Callaway EM (2009) Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience 161(2):441–450

    Article  CAS  PubMed  Google Scholar 

  54. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Daigle TL, Madisen L, Hage TA, Valley MT, Knoblich U, Larsen RS et al (2018) A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 174(2):465–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. He CX, Arroyo ED, Cantu DA, Goel A, Portera-Cailliau C (2018) A versatile method for viral transfection of calcium indicators in the neonatal mouse brain. Front Neural Circuits 12:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim JY, Ash RT, Ceballos-Diaz C, Levites Y, Golde TE, Smirnakis SM, Jankowsky JL (2013) Viral transduction of the neonatal brain delivers controllable genetic mosaicism for visualising and manipulating neuronal circuits in vivo. Eur J Neurosci 37(8):1203–1220

    Article  PubMed  PubMed Central  Google Scholar 

  58. Challis RC, Kumar SR, Chan KY, Challis C, Beadle K, Jang MJ et al (2019) Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat Protoc 14(2):379–414

    Article  CAS  PubMed  Google Scholar 

  59. Goldey GJ, Roumis DK, Glickfeld LL, Kerlin AM, Reid RC, Bonin V et al (2014) Removable cranial windows for long-term imaging in awake mice. Nat Protoc 9(11):2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Juavinett AL, Nauhaus I, Garrett ME, Zhuang J, Callaway EM (2017) Automated identification of mouse visual areas with intrinsic signal imaging. Nat Protoc 12(1):32

    Article  CAS  PubMed  Google Scholar 

  61. Guo ZV, Hires SA, Li N, O’Connor DH, Komiyama T, Ophir E et al (2014) Procedures for behavioral experiments in head-fixed mice. PLoS One 9(2):e88678

    Article  PubMed  PubMed Central  Google Scholar 

  62. O’Connor DH, Peron SP, Huber D, Svoboda K (2010) Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67(6):1048–1061

    Article  PubMed  Google Scholar 

  63. Holtmaat A, Bonhoeffer T, Chow DK, Chuckowree J, De Paola V, Hofer SB et al (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4(8):1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Podgorski K, Ranganathan G (2016) Brain heating induced by near-infrared lasers during multiphoton microscopy. J Neurophysiol 116(3):1012–1023. https://doi.org/10.1152/jn.00275.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Picot A, Dominguez S, Liu C, Chen IW, Tanese D, Ronzitti E, Berto P, Papagiakoumou E, Oron D, Tessier G, Forget BC, Emiliani V (2018) Temperature rise under two-photon optogenetic brain stimulation. Cell Rep 24(5):1243–1253.e5. https://doi.org/10.1016/j.celrep.2018.06.119

    Article  CAS  PubMed  Google Scholar 

  66. Kawakami R, Sawada K, Kusama Y, Fang YC, Kanazawa S, Kozawa Y et al (2015) In vivo two-photon imaging of mouse hippocampal neurons in dentate gyrus using a light source based on a high-peak power gain-switched laser diode. Biomed Opt Express 6(3):891–901

    Article  PubMed  PubMed Central  Google Scholar 

  67. Galiñanes GL, Marchand PJ, Turcotte R, Pellat S, Ji N, Huber D (2018) Optical alignment device for two-photon microscopy. Biomed Opt Express 9(8):3624–3639

    Article  PubMed  PubMed Central  Google Scholar 

  68. Matyas F, Sreenivasan V, Marbach F, Wacongne C, Barsy B, Mateo C et al (2010) Motor control by sensory cortex. Science 330(6008):1240–1243

    Article  CAS  PubMed  Google Scholar 

  69. Clack NG, O’Connor DH, Huber D, Petreanu L, Hires A, Peron S, Myers EW (2012) Automated tracking of whiskers in videos of head fixed rodents. PLoS Comput Biol 8(7):e1002591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M, Harris KD (2019) Spontaneous behaviors drive multidimensional, brainwide activity. Science 364(6437):255

    Article  PubMed  PubMed Central  Google Scholar 

  71. Erisken S, Vaiceliunaite A, Jurjut O, Fiorini M, Katzner S, Busse L (2014) Effects of locomotion extend throughout the mouse early visual system. Curr Biol 24(24):2899–2907

    Article  CAS  PubMed  Google Scholar 

  72. Musall S, Kaufman MT, Juavinett AL, Gluf S, Churchland AK (2019) Single-trial neural dynamics are dominated by richly varied movements. Nat Neurosci 22(10):1677–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee CC, Kheradpezhouh E, Diamond ME, Arabzadeh E (2020) State-dependent changes in perception and coding in the mouse somatosensory cortex. Cell Rep 32(13):108197

    Article  CAS  PubMed  Google Scholar 

  74. Pachitariu M, Stringer C, Dipoppa M, Schröder S, Rossi LF, Dalgleish H et al (2017) Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Biorxiv

    Google Scholar 

  75. Giovannucci A, Friedrich J, Gunn P, Kalfon J, Brown BL, Koay SA et al (2019) CaImAn an open source tool for scalable calcium imaging data analysis. elife 8:e38173

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW (2007) Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56(1):43–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Giovannucci A, Friedrich J, Kaufman M, Churchland A, Chklovskii D, Paninski L, Pnevmatikakis EA (2017) Onacid: online analysis of calcium imaging data in real time. In: Advances in neural information processing systems 30, pp 2382–2392

    Google Scholar 

  78. Guizar-Sicairos M, Thurman ST, Fienup JR (2008) Efficient subpixel image registration algorithms. Opt Lett 33(2):156–158

    Article  PubMed  Google Scholar 

  79. Greenberg DS, Kerr JN (2009) Automated correction of fast motion artifacts for two-photon imaging of awake animals. J Neurosci Methods 176(1):1–15

    Article  PubMed  Google Scholar 

  80. Muir DR, Roth M, Helmchen F, Kampa B (2015) Model-based analysis of pattern motion processing in mouse primary visual cortex. Front Neural Circuits 9:38

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pnevmatikakis EA, Giovannucci A (2017) NoRMCorre: an online algorithm for piecewise rigid motion correction of calcium imaging data. J Neurosci Methods 291:83–94

    Article  CAS  PubMed  Google Scholar 

  82. Andermann ML, Kerlin AM, Reid C (2010) Chronic cellular imaging of mouse visual cortex during operant behavior and passive viewing. Front Cell Neurosci 4:3

    PubMed  PubMed Central  Google Scholar 

  83. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318

    Article  CAS  PubMed  Google Scholar 

  84. Chen JL, Pfäffli OA, Voigt FF, Margolis DJ, Helmchen F (2013) Online correction of licking-induced brain motion during two-photon imaging with a tunable lens. J Physiol 591(19):4689–4698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kaifosh P, Zaremba JD, Danielson NB, Losonczy A (2014) SIMA: Python software for analysis of dynamic fluorescence imaging data. Front Neuroinform 8:80. https://doi.org/10.3389/fninf.2014.00080

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pnevmatikakis EA, Soudry D, Gao Y, Machado TA, Merel J, Pfau D et al (2016) Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89(2):285–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, Bethge M (2018) DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat Neurosci 21(9):1281–1289

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariangela Panniello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Panniello, M., Limal, S.A.C., Kohl, M.M. (2023). Imaging Somatosensory Cortex in Rodents. In: Holmes, N.P. (eds) Somatosensory Research Methods. Neuromethods, vol 196. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3068-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3068-6_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3067-9

  • Online ISBN: 978-1-0716-3068-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics