Skip to main content

Purification and ATPase Activity Measurement of Spiroplasma MreB

  • 134 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2646)


Spiroplasma is a genus of wall-less helical bacteria with swimming motility unrelated to conventional types of bacterial motility machinery, such as flagella and pili. The swimming of Spiroplasma is suggested to be driven by five classes of MreB (MreB1-MreB5), which are members of the actin superfamily. In vitro studies of Spiroplasma MreBs have recently been conducted to evaluate their activities, such as ATPase, which is essential for the polymerization dynamics among classic actin superfamily proteins. In this chapter, we describe methods of purification and Pi release measurement of Spiroplasma MreBs using column chromatography and absorption spectroscopy with the molecular probe, 2-amino-6-mercapto-7-methylpurine riboside (MESG). Of note, the methods described here are applicable to other proteins that possess NTPase activity.

Key words

  • Bacterial actin cytoskeleton
  • E. coli expression system
  • Recombinant protein
  • Ni2+-NTA affinity chromatography
  • Gel filtration
  • Pi release assay
  • Absorption spectroscopy

This is a preview of subscription content, access via your institution.

Buying options

USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-3060-0_30
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-3060-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more


  1. Paredes JC, Herren JK, Schüpfer F et al (2015) Genome sequence of the Drosophila melanogaster male-killing Spiroplasma strain MSRO endosymbiont. mBio 6(2):e02437–02414

    Google Scholar 

  2. Gasparich GE (2002) Spiroplasmas: evolution, adaptation and diversity. Front Biosci 7:d619–d640

    CAS  PubMed  Google Scholar 

  3. Liu P, Zheng H, Meng Q et al (2017) Chemotaxis without conventional two-component system, based on cell polarity and aerobic conditions in helicity-switching swimming of Spiroplasma eriocheiris. Front Microbiol 8:58

    PubMed  PubMed Central  Google Scholar 

  4. Terahara N, Tulum I, Miyata M (2017) Transformation of crustacean pathogenic bacterium Spiroplasma eriocheiris and expression of yellow fluorescent protein. Biochem Biophys Res Commun 487(3):488–493

    CrossRef  CAS  PubMed  Google Scholar 

  5. Miyata M, Robinson RC, Uyeda TQP et al (2020) Tree of motility – a proposed history of motility systems in the tree of life. Genes Cells 25(1):6–21

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakane D, Ito T, Nishizaka T (2020) Coexistence of two chiral helices produces kink translation in Spiroplasma swimming. J Bacteriol 202(8):e00735–e00719

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shaevitz JW, Lee JY, Fletcher DA (2005) Spiroplasma swim by a processive change in body helicity. Cell 122(6):941–945

    CrossRef  CAS  PubMed  Google Scholar 

  8. Kiyama H, Kakizawa S, Sasajima Y et al (2022) Reconstitution of minimal motility system based on Spiroplasma swimming by two bacterial actins in a synthetic minimal bacterium. Sci Adv 8(48):eabo7490

    Google Scholar 

  9. Takahashi D, Fujiwara I, Miyata M (2020) Phylogenetic origin and sequence features of MreB from the wall-less swimming bacteria Spiroplasma. Biochem Biophys Res Commun 533(4):638–644

    CrossRef  CAS  PubMed  Google Scholar 

  10. Harne S, Duret S, Pande V et al (2020) MreB5 is a determinant of rod-to-helical transition in the cell-wall-less bacterium Spiroplasma. Curr Biol 30(23):4753–4762.e4757

    Google Scholar 

  11. Ku C, Lo WS, Kuo CH (2014) Molecular evolution of the actin-like MreB protein gene family in wall-less bacteria. Biochem Biophys Res Commun 446(4):927–932

    CrossRef  CAS  PubMed  Google Scholar 

  12. Trachtenberg S, Dorward LM, Speransky VV et al (2008) Structure of the cytoskeleton of Spiroplasma melliferum BC3 and its interactions with the cell membrane. J Mol Biol 378(4):778–789

    CrossRef  PubMed  Google Scholar 

  13. Kürner J, Frangakis AS, Baumeister W (2005) Cryo-electron tomography reveals the cytoskeletal structure of Spiroplasma melliferum. Science 307(5708):436–438

    CrossRef  PubMed  Google Scholar 

  14. Shi H, Bratton BP, Gitai Z et al (2018) How to build a bacterial cell: MreB as the foreman of E. coli construction. Cell 172(6):1294–1305

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wagstaff J, Löwe J (2018) Prokaryotic cytoskeletons: protein filaments organizing small cells. Nat Rev Microbiol 16(4):187–201

    CrossRef  CAS  PubMed  Google Scholar 

  16. Takahashi D, Fujiwara I, Sasajima Y et al (2022) ATP-dependent polymerization dynamics of bacterial actin proteins involved in Spiroplasma swimming. Open Biol 12(10):220083

    Google Scholar 

  17. Wegner A (1976) Head to tail polymerization of actin. J Mol Biol 108(1):139–150

    CrossRef  CAS  PubMed  Google Scholar 

  18. Masson F, Pierrat X, Lemaitre B et al (2021) The wall-less bacterium Spiroplasma poulsonii builds a polymeric cytoskeleton composed of interacting MreB isoforms. iScience 24(12):103458

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pande V, Mitra N, Bagde SR et al (2022) Filament organization of the bacterial actin MreB is dependent on the nucleotide state. J Cell Biol 221(5):e202106092

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blanchoin L, Pollard TD (1999) Mechanism of interaction of Acanthamoeba actophorin (ADF/cofilin) with actin filaments. J Biol Chem 274(22):15538–15546

    CrossRef  CAS  PubMed  Google Scholar 

  21. Webb MR (1992) A continuous spectrophotometric assay for inorganic-phosphate and for measuring phosphate release kinetics in biological-systems. Proc Natl Acad Sci U S A 89(11):4884–4887

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references


This study was supported by Grants-in-Aid for Scientific Research (A and C) (MEXT KAKENHI, Grant Numbers JP17H01544 to MM and JP20K06591 to IF), JST CREST (Grant Number JPMJCR19S5 to MM), the Research Foundation of Opto-Science and Technology to IF, and the Osaka City University (OCU) Strategic Research Grant 2019 to IF. DT is a recipient of the Research Fellowship of the Japan Society for the Promotion of Science (22J10345).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ikuko Fujiwara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Takahashi, D., Fujiwara, I., Miyata, M. (2023). Purification and ATPase Activity Measurement of Spiroplasma MreB. In: Minamino, T., Miyata, M., Namba, K. (eds) Bacterial and Archaeal Motility. Methods in Molecular Biology, vol 2646. Humana, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3059-4

  • Online ISBN: 978-1-0716-3060-0

  • eBook Packages: Springer Protocols