Skip to main content

The MTT Assay: A Method for Error Minimization and Interpretation in Measuring Cytotoxicity and Estimating Cell Viability

  • Protocol
  • First Online:
Cell Viability Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2644))

Abstract

The MTT assay is extensively used, most often to infer a measure of cytotoxicity of treatments to cells. As with any assay though, there are a number of limitations. The method described here is designed with consideration of how the MTT assay fundamentally works to account for, or at least identify, confounding factors in measurements. It also provides a decision-making framework to best interpret and complement the MTT assay to apply it as either a measure of metabolic activity or cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152

    Article  CAS  PubMed  Google Scholar 

  2. Berridge MV, Tan AS (1993) Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303(2):474–482

    Article  CAS  PubMed  Google Scholar 

  3. Bernas T, Dobrucki J (2002) Mitochondrial and nonmitochondrial reduction of MTT: interaction of MTT with TMRE, JC-1, and NAO mitochondrial fluorescent probes. Cytometry 47(4):236–242

    Article  CAS  PubMed  Google Scholar 

  4. Chakrabarti R et al (2000) Vitamin A as an enzyme that catalyzes the reduction of MTT to formazan by vitamin C. J Cell Biochem 80(1):133–138

    Article  CAS  PubMed  Google Scholar 

  5. Collier AC, Pritsos CA (2003) The mitochondrial uncoupler dicumarol disrupts the MTT assay. Biochem Pharmacol 66(2):281–287

    Article  CAS  PubMed  Google Scholar 

  6. Pagliacci MC et al (1993) Genistein inhibits tumour cell growth in vitro but enhances mitochondrial reduction of tetrazolium salts: a further pitfall in the use of the MTT assay for evaluating cell growth and survival. Eur J Cancer 29(11):1573–1577

    Article  Google Scholar 

  7. Ulukaya E, Colakogullari M, Wood EJ (2004) Interference by anti-cancer chemotherapeutic agents in the MTT-tumor chemosensitivity assay. Chemotherapy 50(1):43–50

    Article  CAS  PubMed  Google Scholar 

  8. Stepanenko AA, Dmitrenko VV (2015) Pitfalls of the MTT assay: direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene 574(2):193–203

    Article  CAS  PubMed  Google Scholar 

  9. Präbst K et al (2017) Basic colorimetric proliferation assays: MTT, WST, and resazurin. In: Methods in molecular biology. pp 1–17

    Google Scholar 

  10. Ghasemi M et al (2021) The mtt assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int J Mol Sci 22(23): 12827

    Google Scholar 

  11. Ulukaya E et al (2008) The MTT assay yields a relatively lower result of growth inhibition than the ATP assay depending on the chemotherapeutic drugs tested. Toxicol In Vitro 22(1):232–239

    Article  CAS  PubMed  Google Scholar 

  12. Kong B et al (2011) Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine 6(5):929–941

    Article  CAS  PubMed  Google Scholar 

  13. Kroll A et al (2009) Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm 72(2):370–377

    Article  CAS  PubMed  Google Scholar 

  14. Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398(2):589–605

    Article  CAS  PubMed  Google Scholar 

  15. Schirmer K et al (1998) Ability of 16 priority PAHs to be directly cytotoxic to a cell line from the rainbow trout gill. Toxicology 127(1–3):129–141

    Article  CAS  PubMed  Google Scholar 

  16. Borenfreund E, Puerner JA (1985) Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett 24(2):119–124

    Article  CAS  PubMed  Google Scholar 

  17. O’Brien J et al (2000) Investigation of the Alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267(17):5421–5426

    Article  PubMed  Google Scholar 

  18. ISO_21115 (2019) Water quality – determination of acute toxicity of water samples and chemicals to a fish gill cell line (RTgill-W1). International Organization for Standardisation, Geneva

    Google Scholar 

  19. Kong B et al (2011) Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine 6:929

    Article  CAS  PubMed  Google Scholar 

  20. Detappe A et al (2018) Advancements in nanomedicine for multiple myeloma. Trends Mol Med 24(6):560–574

    Article  CAS  PubMed  Google Scholar 

  21. Ahmed KBR et al (2017) Silver nanoparticles: significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol In Vitro 38:179–192

    Article  Google Scholar 

  22. Seabra AB et al (2014) Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol 27(2):159–168

    Article  CAS  PubMed  Google Scholar 

  23. Kroll A et al (2012) Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol 86:1123

    Article  CAS  PubMed  Google Scholar 

  24. Henslee EA et al (2016) Accurate quantification of apoptosis progression and toxicity using a dielectrophoretic approach. Analyst 141(23):6408–6415

    Article  CAS  PubMed  Google Scholar 

  25. Rai Y et al (2018) Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition. Sci Rep 8(1):1–15

    Article  Google Scholar 

  26. Barkhade T et al (2019) Effect of TiO2 and Fe doped TiO2 nanoparticles on mitochondrial membrane potential in HBL-100 cells. Biointerphases 14(4):041003

    Google Scholar 

  27. Maioli E et al (2009) Critical appraisal of the MTT assay in the presence of Rottlerin and uncouplers. Biol Proc Online 11(1):227–240

    Article  CAS  Google Scholar 

  28. Śliwka L et al (2016) The comparison of MTT and CVS assays for the assessment of anticancer agent interactions. PLoS One 11(5):e0155772

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jabbar SAB, Twentyman PR, Watson JV (1989) The MTT assay underestimates the growth inhibitory effects of interferons. Br J Cancer 60(4):523–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chan SM, Khoo KS, Sit NW (2015) Interactions between plant extracts and cell viability indicators during cytotoxicity testing: implications for ethnopharmacological studies. Trop J Pharm Res 14(11):1991–1998

    Article  CAS  Google Scholar 

  31. Bruggisser R et al (2002) Interference of plant extracts, phytoestrogens and antioxidants with the MTT tetrazolium assay. Planta Med 68(05):445–448

    Article  CAS  PubMed  Google Scholar 

  32. Bernhard D et al (2003) Enhanced MTT-reducing activity under growth inhibition by resveratrol in CEM-C7H2 lymphocytic leukemia cells. Cancer Lett 195(2):193–199

    Article  CAS  PubMed  Google Scholar 

  33. Laaksonen T et al (2007) Failure of MTT as a toxicity testing agent for mesoporous silicon microparticles. Chem Res Toxicol 20(12):1913–1918

    Article  CAS  PubMed  Google Scholar 

  34. Kermanizadeh A et al (2015) The role of intracellular redox imbalance in nanomaterial induced cellular damage and genotoxicity: a review. Environ Mol Mutagen 56(2):111–124

    Article  CAS  PubMed  Google Scholar 

  35. Liao K-H et al (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces 3(7):2607–2615

    Article  CAS  PubMed  Google Scholar 

  36. Tournebize J et al (2013) Pitfalls of assays devoted to evaluation of oxidative stress induced by inorganic nanoparticles. Talanta 116:753–763

    Article  CAS  PubMed  Google Scholar 

  37. Voinov MA et al (2011) Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc 133(1):35–41

    Article  CAS  PubMed  Google Scholar 

  38. Chia HL et al (2018) Cytotoxicity of group 5 transition metal ditellurides (MTe2; M= V, Nb, Ta). Chem Eur J 24(1):206–211

    Article  CAS  PubMed  Google Scholar 

  39. Neufeld BH et al (2018) Small molecule interferences in resazurin and MTT-based metabolic assays in the absence of cells. Anal Chem 90(11):6867–6876

    Article  CAS  PubMed  Google Scholar 

  40. Bruggisser R et al (2002) Interference of plant extracts, phytoestrogens and antioxidants with the MTT tetrazolium assay. Planta Med 68(5):445–448

    Article  CAS  PubMed  Google Scholar 

  41. Buch K et al (2012) Determination of cell survival after irradiation via clonogenic assay versus multiple MTT assay - a comparative study. Radiat Oncol 7(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hu VW et al (2002) 3H-thymidine is a defective tool with which to measure rates of DNA synthesis. FASEB J 16(11):1456–1457

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Kempson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ghasemi, M., Liang, S., Luu, Q.M., Kempson, I. (2023). The MTT Assay: A Method for Error Minimization and Interpretation in Measuring Cytotoxicity and Estimating Cell Viability. In: Friedrich, O., Gilbert, D.F. (eds) Cell Viability Assays. Methods in Molecular Biology, vol 2644. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3052-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3052-5_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3051-8

  • Online ISBN: 978-1-0716-3052-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics