Skip to main content

The Plant Metabolic Changes and the Physiological and Signaling Functions in the Responses to Abiotic Stress

  • Protocol
  • First Online:
Plant Abiotic Stress Signaling

Abstract

Global climate change has altered, and will further alter, rainfall patterns and temperatures likely causing more frequent drought and heat waves, which will consequently exacerbate abiotic stresses of plants and significantly decrease the yield and quality of crops. On the one hand, the global demand for food is ever-increasing owing to the rapid increase of the human population. On the other hand, metabolic responses are one of the most important mechanisms by which plants adapt to and survive to abiotic stresses. Here we therefore summarize recent progresses including the plant primary and secondary metabolic responses to abiotic stresses and their function in plant resistance acting as antioxidants, osmoregulatory, and signaling factors, which enrich our knowledge concerning commonalities of plant metabolic responses to abiotic stresses, including their involvement in signaling processes. Finally, we discuss potential methods of metabolic fortification of crops in order to improve their abiotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Malhi GS, Kaur M, Kaushik P (2021) Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability 13(3):1318

    Article  CAS  Google Scholar 

  2. Zandalinas SI, Mittler R (2022) Plant responses to multifactorial stress combination. New Phytol 234(4):1161–1167

    Article  PubMed  Google Scholar 

  3. Pachauri RK, Allen MR, Barros VR et al (2014) Climate change 2014: synthesis report. In: Pachauri R, Meyer L (eds) Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change (IPCC), Geneva

    Google Scholar 

  4. Niu Y, Xiang Y (2018) An overview of biomembrane functions in plant responses to high-temperature stress. Front Plant Sci 9:915

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li N, Euring D, Cha JY et al (2021) Plant hormone-mediated regulation of heat tolerance in response to global climate change. Front Plant Sci 11:2318

    Article  Google Scholar 

  6. Joshi J, Hasnain G, Logue T et al (2021) A core metabolome response of maize leaves subjected to long-duration abiotic stresses. Metabolites 11(11):797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. He X, Pan M, Wei Z et al (2020) A global drought and flood catalogue from 1950 to 2016. B Am Meteorol Soc 101(5):E508–E535

    Article  Google Scholar 

  8. Bhattacharya A (2010) Effect of soil water deficit on growth and development of plants: a review. In: Bhattacharya A (ed) Soil water deficit and physiological issues in plants. Springer, Singapore, pp 393–488

    Google Scholar 

  9. Xu Z, Zhou G, Shimizu H (2010) Plant responses to drought and rewatering. Plant Signal Behav 5(6):649–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Loreti E, van Veen H, Perata P (2016) Plant responses to flooding stress. Curr Opin Plant Biol 33:64–71

    Article  CAS  PubMed  Google Scholar 

  11. Liu Z, Hartman S, van Veen H et al (2022) Ethylene augments root hypoxia tolerance via growth cessation and reactive oxygen species amelioration. Plant Physiol 190(2):1365–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Obata T, Witt S, Lisec J et al (2015) Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol 169(4):2665–2683

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Peng M, Shahzad R, Gul A et al (2017) Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. Nat Commun 8(1):1–12

    Article  Google Scholar 

  14. Zhu F, Alseekh S, Wen W et al (2022) Genome-wide association studies of Arabidopsis dark-induced senescence reveals signatures of autophagy in metabolic reprogramming. Autophagy 18(2):457–458

    Article  CAS  PubMed  Google Scholar 

  15. Zhu F, Alseekh S, Koper K et al (2022) Genome-wide association of the metabolic shifts underpinning dark-induced senescence in Arabidopsis. Plant Cell 34(1):557–578

    Article  PubMed  Google Scholar 

  16. Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 69(19):3225–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang S, Li Y, He L et al (2022) Natural variance at the interface of plant primary and specialized metabolism. Curr Opin Plant Biol 67:102201

    Article  PubMed  Google Scholar 

  18. Ali Q, Athar HR, Haider MZ, Shahid S et al (2019) Role of amino acids in improving abiotic stress tolerance to plants. In: Hasanuzzaman M, Fujita M, Oku H, Islam MT (eds) Plant tolerance to environmental stress. CRC Press, Boca Raton, pp 175–204

    Chapter  Google Scholar 

  19. Ghosh UK, Islam MN, Siddiqui MN et al (2022) Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biol 24(2):227–239

    Article  CAS  PubMed  Google Scholar 

  20. Yoshiba Y, Kiyosue T, Nakashima K et al (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38(10):1095–1102

    Article  CAS  PubMed  Google Scholar 

  21. Wang H, Ding Q, Shao H et al (2019) Overexpression of KvP5CS1 increases salt tolerance in transgenic tobacco. Pak J Bot 51(3):831–836

    Article  CAS  Google Scholar 

  22. Semida WM, Abdelkhalik A, Rady MOA et al (2020) Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Sci Hortic 272:109580

    Article  CAS  Google Scholar 

  23. Sharma P, Shanker Dubey R (2005) Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol 162(8):854–864

    Article  CAS  PubMed  Google Scholar 

  24. Fabro G, Kovács I, Pavet V et al (2004) Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Mol Plant-Microbe Interact 17(4):343–350

    Article  CAS  PubMed  Google Scholar 

  25. Rady MM, Kuşvuran A, Alharby HF et al (2019) Pretreatment with proline or an organic bio-stimulant induces salt tolerance in wheat plants by improving antioxidant redox state and enzymatic activities and reducing the oxidative stress. J Plant Growth Regul 38(2):449–462

    Article  CAS  Google Scholar 

  26. dos Santos AR, Melo YL, de Oliveira LF et al (2022) Exogenous silicon and proline modulate osmoprotection and antioxidant activity in Cowpea under drought stress. J Soil Sci Plant Nut 22:1692–1699

    Google Scholar 

  27. de Freitas PAF, de Souza MR, Marques EC et al (2018) Salt tolerance induced by exogenous proline in maize is related to low oxidative damage and favorable ionic homeostasis. J Plant Growth Regul 37(3):911–924

    Article  Google Scholar 

  28. Ramakrishna A, Atanu B (2020) Glutamate: physiological roles and its signaling in plants. In: Baluška F, Mukherjee S, Ramakrishna A (eds) Neurotransmitters in plant signaling and communication. Springer, Cham, pp 253–264

    Chapter  Google Scholar 

  29. Rejeb KB, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Bioch 80:278–284

    Article  Google Scholar 

  30. La VH, Lee B-R, Islam MT et al (2019) Comparative hormonal regulatory pathway of the drought responses in relation to glutamate-mediated proline metabolism in Brassica napus. bioRxiv 704726. https://doi.org/10.1101/704726

  31. Bor M, Turkan I (2019) Is there a room for GABA in ROS and RNS signalling? Environ Exp Bot 161:67–73

    Article  CAS  Google Scholar 

  32. Xu B, Long Y, Feng X et al (2021) GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nat Commun 12(1):1–13

    PubMed  PubMed Central  Google Scholar 

  33. Banerjee A, Roychoudhury A (2019) Role of glutathione in plant abiotic stress tolerance. In: Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M (eds) Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms. Wiley, Hoboken, pp 159–172

    Chapter  Google Scholar 

  34. Paulose B, Chhikara S, Coomey J et al (2013) A γ-glutamyl cyclotransferase protects Arabidopsis plants from heavy metal toxicity by recycling glutamate to maintain glutathione homeostasis. Plant Cell 25(11):4580–4595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Amini S, Maali-Amiri R, Kazemi-Shahandashti S-S et al (2021) Effect of cold stress on polyamine metabolism and antioxidant responses in chickpea. J Plant Physiol 258-259:153387

    Article  CAS  PubMed  Google Scholar 

  36. Gao C, Sheteiwy MS, Han J et al (2020) Polyamine biosynthetic pathways and their relation with the cold tolerance of maize (Zea mays L.) seedlings. Plant Signal Behav 15(11):1807722

    Article  Google Scholar 

  37. Ding F, Wang C, Xu N et al (2021) Jasmonic acid-regulated putrescine biosynthesis attenuates cold-induced oxidative stress in tomato plants. Sci Hortic 288:110373

    Article  CAS  Google Scholar 

  38. Zhao J, Wang X, Pan X et al (2021) Exogenous Putrescine alleviates drought stress by altering reactive oxygen species scavenging and biosynthesis of polyamines in the seedlings of Cabernet Sauvignon. Front Plant Sci 12:767992

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jing J, Guo S, Li Y et al (2020) The alleviating effect of exogenous polyamines on heat stress susceptibility of different heat resistant wheat (Triticum aestivum L.) varieties. Sci Rep 10(1):1–12

    Article  Google Scholar 

  40. Shah AA, Riaz L, Siddiqui MH et al (2022) Spermine-mediated polyamine metabolism enhances arsenic-stress tolerance in Phaseolus vulgaris by expression of zinc-finger proteins related genes and modulation of mineral nutrient homeostasis and antioxidative system. Environ Pollut 300:118941

    Article  CAS  PubMed  Google Scholar 

  41. Jankovska-Bortkevič E, Gavelienė V, Šveikauskas V et al (2020) Foliar application of polyamines modulates winter oilseed rape responses to increasing cold. Plants (Basel) 9(2):179

    Google Scholar 

  42. Ruelland E, Vaultier M-N, Zachowski A et al (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150

    Google Scholar 

  43. Li Y, He J (2012) Advance in metabolism and response to stress of polyamines in plant. Acta Agric Boreali Sin 27:240–245

    Google Scholar 

  44. Peng D, Wang X, Li Z et al (2016) NO is involved in spermidine-induced drought tolerance in white clover via activation of antioxidant enzymes and genes. Protoplasma 253(5):1243–1254

    Article  CAS  PubMed  Google Scholar 

  45. Yamaguchi K, Takahashi Y, Berberich T et al (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Bioph Res Co 352(2):486–490

    Article  CAS  Google Scholar 

  46. Nahar K, Hasanuzzaman M, Suzuki T et al (2017) Polyamines-induced aluminum tolerance in mung bean: a study on antioxidant defense and methylglyoxal detoxification systems. Ecotoxicology 26(1):58–73

    Article  CAS  PubMed  Google Scholar 

  47. Afzal S, Chaudhary N, Singh NK (2021) Role of soluble sugars in metabolism and sensing under abiotic stress. In: Aftab T, Hakeem KR (eds) Plant growth regulators: signalling under stress conditions. Springer Nature, pp 305–334

    Chapter  Google Scholar 

  48. Jogawat A (2019) Osmolytes and their role in abiotic stress tolerance in plants. In: Roychoudhury A, Tripathi DK (eds) Molecular plant abiotic stress: biology and biotechnology. Wiley, Hoboken, pp 91–104

    Chapter  Google Scholar 

  49. Chardon F, Bedu M, Calenge F et al (2013) Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Curr Biol 23(8):697–702

    Article  CAS  PubMed  Google Scholar 

  50. Gangola MP, Ramadoss BR (2018) Sugars play a critical role in abiotic stress tolerance in plants. In: Wani SH (ed) Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants. Elsevier, Amsterdam, pp 17–38

    Chapter  Google Scholar 

  51. Van den Ende W, Peshev D (2013) Sugars as antioxidants in plants. In: Tuteja N, Gill SS (eds) Crop improvement under adverse conditions. Springer, New York, pp 285–307

    Chapter  Google Scholar 

  52. Mukherjee S, Sengupta S, Mukherjee A et al (2019) Abiotic stress regulates expression of galactinol synthase genes post-transcriptionally through intron retention in rice. Planta 249(3):891–912

    Article  CAS  PubMed  Google Scholar 

  53. Gupta KJ, Shah JK, Brotman Y et al (2012) Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids. J Exp Bot 63(4):1773–1784

    Article  CAS  PubMed  Google Scholar 

  54. Tahjib-Ul-Arif M, Zahan M, Karim M et al (2021) Citric acid-mediated abiotic stress tolerance in plants. Int J Mol Sci 22(13):7235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zabiszak M, Nowak M, Taras-Goslinska K et al (2018) Carboxyl groups of citric acid in the process of complex formation with bivalent and trivalent metal ions in biological systems. J Inorg Biochem 182:37–47

    Article  CAS  PubMed  Google Scholar 

  56. Ma JF, Zheng SJ, Matsumoto H (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol 38(9):1019–1025

    Article  CAS  Google Scholar 

  57. Ma JF, Hiradate S (2000) Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211(3):355–360

    Article  CAS  PubMed  Google Scholar 

  58. Afshan S, Ali S, Bharwana SA et al (2015) Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ Sci Pollut R 22(15):11679–11689

    Article  CAS  Google Scholar 

  59. Ehsan S, Ali S, Noureen S et al (2014) Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotox Environ Safe 106:164–172

    Article  CAS  Google Scholar 

  60. Harayama T, Riezman H (2018) Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Bio 19(5):281–296

    Article  CAS  Google Scholar 

  61. Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10(8):368–375

    Article  CAS  PubMed  Google Scholar 

  62. Boudière L, Michaud M, Petroutsos D et al (2014) Glycerolipids in photosynthesis: composition, synthesis and trafficking. BBA-Bioenergetics 1837(4):470–480

    Article  PubMed  Google Scholar 

  63. Singer SD, Zou J, Weselake RJ (2016) Abiotic factors influence plant storage lipid accumulation and composition. Plant Sci 243:1–9

    Article  CAS  PubMed  Google Scholar 

  64. Zhou Y, Yu H, Tang Y et al (2022) Critical roles of mitochondrial fatty acid synthesis in tomato development and environmental response. Plant Physiol 190(1):576–591

    Article  CAS  PubMed  Google Scholar 

  65. Chen D, Wang S, Qi L, Yin L et al (2018) Galactolipid remodeling is involved in drought-induced leaf senescence in maize. Environ Exp Bot 150:57–68

    Article  CAS  Google Scholar 

  66. Wang S, Uddin MI, Tanaka K et al (2014) Maintenance of chloroplast structure and function by overexpression of the rice Monogalactosyldiacylglycerol Synthase gene leads to enhanced salt tolerance in tobacco. Plant Physiol 165(3):1144–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yu C, Lin Y, Li H (2020) Increased ratio of galactolipid MGDG:DGDG induces jasmonic acid overproduction and changes chloroplast shape. New Phytol 228(4):1327–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu X, Ma D, Zhang Z et al (2019) Plant lipid remodeling in response to abiotic stresses. Environ Exp Bot 165:174–184

    Article  CAS  Google Scholar 

  69. Zhang M, Deng X, Yin L et al (2016) Regulation of galactolipid biosynthesis by overexpression of the rice MGD gene contributes to enhanced aluminum tolerance in tobacco. Front Plant Sci 7:337

    PubMed  PubMed Central  Google Scholar 

  70. Chen D, Wang S, Qi L et al (2018) Galactolipid remodeling is involved in drought-induced leaf senescence in maize. Environ Exp Bot 150:57–68

    Article  CAS  Google Scholar 

  71. Du Z-Y, Lucker BF, Zienkiewicz K et al (2018) Galactoglycerolipid lipase PGD1 is involved in thylakoid membrane remodeling in response to adverse environmental conditions in Chlamydomonas. Plant Cell 30(2):447–465

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Chng C, Wang K, Ma W et al (2021) Chloroplast membrane lipid remodeling protects against dehydration by limiting membrane fusion and distortion. Plant Physiol 188(1):526–539

    Article  PubMed Central  Google Scholar 

  73. Spicher L, Glauser G, Kessler F (2016) Lipid antioxidant and galactolipid remodeling under temperature stress in tomato plants. Front Plant Sci 7:167

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ernst R, Ejsing CS, Antonny B (2016) Homeoviscous adaptation and the regulation of membrane lipids. J Mol Biol 428(24):4776–4791

    Article  CAS  PubMed  Google Scholar 

  75. Yu L, Zhou C, Fan J (2021) Mechanisms and functions of membrane lipid remodeling in plants. Plant J 107(1):37–53

    Article  CAS  PubMed  Google Scholar 

  76. Allakhverdiev SI, Kinoshita M, Inaba M et al (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol 125(4):1842–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang W, Qin C, Zhao J (2004) Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. P Natl Acad Sci USA 101(25):9508–9513

    Article  CAS  Google Scholar 

  78. Guo L, Devaiah SP, Narasimhan R et al (2012) Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell 24(5):2200–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Distefano AM, García-Mata C, Lamattina L et al (2008) Nitric oxide-induced phosphatidic acid accumulation: a role for phospholipases C and D in stomatal closure. Plant Cell Environ 31(2):187–194

    Article  CAS  PubMed  Google Scholar 

  80. Yu L, Nie J, Cao C et al (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188(3):762–773

    Article  CAS  PubMed  Google Scholar 

  81. McLoughlin F, Galvan-Ampudia CS, Julkowska MM et al (2012) The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. Plant J 72(3):436–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Deng X, Yuan S, Cao H (2019) Phosphatidylinositol-hydrolyzing phospholipase C4 modulates rice response to salt and drought. Plant Cell Environ 42(2):536–548

    Article  CAS  PubMed  Google Scholar 

  83. Wu L, Sadhukhan A, Kobayashi Y et al (2019) Involvement of phosphatidylinositol metabolism in aluminum-induced malate secretion in Arabidopsis. J Exp Bot 70(12):3329–3342

    Article  CAS  PubMed  Google Scholar 

  84. Raju AD, Singh R, Prasad SM et al (2022) JA and abiotic stress tolerance. In: Ansari SA, Ansari MI, Husen A (eds) Augmenting crop productivity in stress environment. Springer, Singapore, pp 275–296

    Chapter  Google Scholar 

  85. Hu Y, Jiang L, Wang F, Yu D (2013) Jasmonate regulates the inducer of CBF expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25(8):2907–2924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tayyab N, Naz R, Yasmin H et al (2020) Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize. PLoS One 15(5):e0232269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yosefi A, Aa M, Javadi T (2020) Jasmonic acid improved in vitro strawberry (Fragaria × ananassa Duch.) resistance to PEG-induced water stress. Plant Cell Tiss Org 142(3):549–558

    Article  CAS  Google Scholar 

  88. Tafolla-Arellano JC, Báez-Sañudo R, Tiznado-Hernández ME (2018) The cuticle as a key factor in the quality of horticultural crops. Sci Hortic 232:145–152

    Article  Google Scholar 

  89. Yeats TH, Rose JK (2013) The formation and function of plant cuticles. Plant Physiol 163(1):5–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li H, Guo Y, Cui Q et al (2020) Alkanes (C29 and C31)-mediated intracuticular wax accumulation contributes to melatonin-and ABA-induced drought tolerance in watermelon. J Plant Growth Regul 39(4):1441–1450

    Article  CAS  Google Scholar 

  91. Xue D, Zhang X, Lu X et al (2017) Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front Plant Sci 8:621

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bernard A, Joubès J et al (2013) Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res 52(1):110–129

    Article  CAS  PubMed  Google Scholar 

  93. Shaheenuzzamn M, Shi S, Sohail K et al (2021) Regulation of cuticular wax biosynthesis in plants under abiotic stress. Plant Biotechnol Rep 15(1):1–12

    Article  CAS  Google Scholar 

  94. Holmes MG, Keiller D (2002) Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant Cell Environ 25(1):85–93

    Article  CAS  Google Scholar 

  95. Lewandowska M, Keyl A, Feussner I (2020) Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress. New Phytol 227(3):698–713

    Article  CAS  PubMed  Google Scholar 

  96. Bourdenx B, Bernard A, Domergue F et al (2011) Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol 156(1):29–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Broun P, Poindexter P, Osborne E et al (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. P Natl Acad Sci USA 101(13):4706–4711

    Article  CAS  Google Scholar 

  98. Kannangara R, Branigan C, Liu Y et al (2007) The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19(4):1278–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lee SB, Kim HU, Suh MC (2016) MYB94 and MYB96 additively activate cuticular wax biosynthesis in Arabidopsis. Plant Cell Physiol 57(11):2300–2311

    Article  CAS  PubMed  Google Scholar 

  100. Aharoni A, Galili G (2011) Metabolic engineering of the plant primary-secondary metabolism interface. Curr Opin Biotech 22(2):239–244

    Article  CAS  PubMed  Google Scholar 

  101. Jan R, Asaf S, Numan M (2021) Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy 11(5):968

    Article  CAS  Google Scholar 

  102. Perin EC, da Silva MR, Borowski JM et al (2019) ABA-dependent salt and drought stress improve strawberry fruit quality. Food Chem 271:516–526

    Article  CAS  PubMed  Google Scholar 

  103. Gharibi S, Tabatabaei BES, Saeidi G et al (2019) The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech. f. Phytochemistry 162:90–98

    Article  CAS  PubMed  Google Scholar 

  104. Kaur L, Zhawar VK (2015) Phenolic parameters under exogenous ABA, water stress, salt stress in two wheat cultivars varying in drought tolerance. Indian J Plant Physiol 20(2):151–156

    Article  Google Scholar 

  105. Šamec D, Karalija E, Šola I et al (2021) The role of polyphenols in abiotic stress response: the influence of molecular structure. Plants (Basel) 10(1):118

    Article  PubMed  Google Scholar 

  106. Hendrickson HP, Kaufman AD, Lunte CE (1994) Electrochemistry of catechol-containing flavonoids. J Pharmaceut Biomed 12(3):325–334

    Article  CAS  Google Scholar 

  107. Landi M, Tattini M, Gould KSJE et al (2015) Multiple functional roles of anthocyanins in plant-environment interactions. Environ Exp Bot 119:4–17

    Article  CAS  Google Scholar 

  108. Barnes PW, Tobler MA, Keefover-Ring K et al (2016) Rapid modulation of ultraviolet shielding in plants is influenced by solar ultraviolet radiation and linked to alterations in flavonoids. Plant Cell Environ 39(1):222–230

    Article  CAS  PubMed  Google Scholar 

  109. Tohge T, Wendenburg R, Ishihara H et al (2016) Characterization of a recently evolved flavonol-phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae. Nat Commun 7(1):1–11

    Article  Google Scholar 

  110. Nakabayashi R, Yonekura-Sakakibara K, Urano K et al (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J 77(3):367–379

    Article  CAS  PubMed  Google Scholar 

  111. Chen S, Wu F, Li Y et al (2019) NtMYB4 and NtCHS1 are critical factors in the regulation of flavonoid biosynthesis and are involved in salinity responsiveness. Front Plant Sci 10:178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang H, Liu S, Wang T et al (2020) The moss flavone synthase I positively regulates the tolerance of plants to drought stress and UV-B radiation. Plant Sci 298:110591

    Article  CAS  PubMed  Google Scholar 

  113. Sun Y, Guo J, Li Y et al (2020) Negative effects of the simulated nitrogen deposition on plant phenolic metabolism: a meta-analysis. Sci Total Environ 719:137442

    Article  CAS  PubMed  Google Scholar 

  114. Koricheva J, Larsson S, Haukioja E et al (1998) Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. Oikos 83:212–226

    Article  CAS  Google Scholar 

  115. Prescott CE, Grayston SJ, Helmisaari H-S et al (2020) Surplus carbon drives allocation and plant–soil interactions. Trends Ecol Evol 35(12):1110–1118

    Article  PubMed  Google Scholar 

  116. Jacoby RP, Koprivova A, Kopriva SJ (2021) Pinpointing secondary metabolites that shape the composition and function of the plant microbiome. J Exp Bot 72(1):57–69

    Article  CAS  PubMed  Google Scholar 

  117. Böttger A, Vothknecht U, Bolle C et al (2018) Terpenes and terpenoids. In: Böttger A, Vothknecht U, Bolle C, Wolf A (eds) Lessons on Caffeine, Cannabis & Co. Springer, Cham, pp 153–170

    Chapter  Google Scholar 

  118. Boncan DAT, Tsang SS, Li C et al (2020) Terpenes and terpenoids in plants: interactions with environment and insects. Int J Mol Sci 21(19):7382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sharkey TD, Singsaas EL (1995) Why plants emit isoprene. Nature 374(6525):769–769

    Article  CAS  Google Scholar 

  120. Siwko ME, Marrink SJ, de Vries AH et al (2007) Does isoprene protect plant membranes from thermal shock? A molecular dynamics study. BBA-Biomembranes 1768(2):198–206

    Article  CAS  PubMed  Google Scholar 

  121. Velikova V, Várkonyi Z, Szabó M et al (2011) Increased thermostability of thylakoid membranes in isoprene-emitting leaves probed with three biophysical techniques. Plant Physiol 157(2):905–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Affek HP, Yakir D (2002) Protection by isoprene against singlet oxygen in leaves. Plant Physiol 129(1):269–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Velikova VB (2008) Isoprene as a tool for plant protection against abiotic stresses. J Plant Interact 3(1):1–15

    Article  CAS  Google Scholar 

  124. Hanson D, Sharkey TD (2001) Effect of growth conditions on isoprene emission and other thermotolerance-enhancing compounds. Plant Cell Environ 24(9):929–936

    Article  CAS  Google Scholar 

  125. Helmig D, Ortega J, Duhl T et al (2007) Sesquiterpene emissions from pine trees− identifications, emission rates and flux estimates for the contiguous United States. Environ Sci Technol 41(5):1545–1553

    Article  CAS  PubMed  Google Scholar 

  126. Farre-Armengol G, Filella I, Llusia J et al (2014) Changes in floral bouquets from compound-specific responses to increasing temperatures. Glob Chang Biol 20(12):3660–3669

    Article  PubMed  PubMed Central  Google Scholar 

  127. Hu Z, Zhang H, Leng P et al (2013) The emission of floral scent from Lilium ‘siberia’ in response to light intensity and temperature. Acta Physiol Plant 35(5):1691–1700

    Article  CAS  Google Scholar 

  128. Kivimäenpää M, Ghimire RP, Sutinen S et al (2016) Increases in volatile organic compound emissions of Scots pine in response to elevated ozone and warming are modified by herbivory and soil nitrogen availability. Eur J Forest Res 135(2):343–360

    Article  Google Scholar 

  129. Szabó K, Zubay P, Németh-Zámboriné É (2020) What shapes our knowledge of the relationship between water deficiency stress and plant volatiles? Acta Physiol Plant 42(8):1–11

    Article  Google Scholar 

  130. Yin J, Liang T, Wang S et al (2015) Effect of drought and nitrogen on betulin and oleanolic acid accumulation and OSC gene expression in white birch saplings. Plant Mol Biol Rep 33(3):705–715

    Article  CAS  Google Scholar 

  131. Hosseini MS, Samsampour D, Ebrahimi M et al (2018) Effect of drought stress on growth parameters, osmolyte contents, antioxidant enzymes and glycyrrhizin synthesis in licorice (Glycyrrhiza glabra L.) grown in the field. Phytochemistry 156:124–134

    Article  CAS  PubMed  Google Scholar 

  132. Loreto F, Delfine S (2000) Emission of isoprene from salt-stressed Eucalyptus globulus leaves. Plant Physiol Bioch 123(4):1605–1610

    Article  CAS  Google Scholar 

  133. Sardans J, Gargallo-Garriga A, Urban O et al (2020) Ecometabolomics for a better understanding of plant responses and acclimation to abiotic factors linked to global change. Metabolites 10(6):239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chaudhry S, Sidhu GPS et al (2022) Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Rep 41(1):1–31

    Article  CAS  PubMed  Google Scholar 

  135. Debnath B, Singh WS, Das M et al (2018) Role of plant alkaloids on human health: a review of biological activities. Mater Today Chem 9:56–72

    Article  CAS  Google Scholar 

  136. Liu Z (2000) Drought-induced in vivo synthesis of camptothecin in Camptotheca acuminata seedlings. Physiol Plantarum 110(4):483–488

    CAS  Google Scholar 

  137. Jaleel CA, Manivannan P, Sankar B et al (2007) Calcium chloride effects on salinity-induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus. C R Biol 330(9):674–683

    Article  CAS  PubMed  Google Scholar 

  138. Osman ME, Elfeky SS, El-Soud KA et al (2007) Response of Catharanthus roseus shoots to salinity and drought in relation to vincristine alkaloid content. Asian J Plant Sci 6:1223–1228

    Article  CAS  Google Scholar 

  139. Hasanuzzaman M, Anee TI, Bhuiyan TF et al (2019) Emerging role of osmolytes in enhancing abiotic stress tolerance in rice. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas J (eds) Advances in rice research for abiotic stress tolerance. Elsevier, Amsterdam, pp 677–708

    Chapter  Google Scholar 

  140. Zu Y, Tang Z, Yu J et al (2003) Different responses of camptothecin and 10-hydroxycamptothecin to heat shock in Camptotheca acuminata seedlings. Acta Bot Sin 45:809–814

    CAS  Google Scholar 

  141. Guo X, Yang L, Yu J et al (2007) Alkaloid variations in Catharanthus roseus seedlings treated by different temperatures in short term and long term. J Forestry Res 18(4):313–315

    Article  CAS  Google Scholar 

  142. Gao C, Yang B, Zhang D et al (2016) Enhanced metabolic process to indole alkaloids in Clematis terniflora DC. After exposure to high level of UV-B irradiation followed by the dark. BMC Plant Biol 16(1):1–15

    Article  Google Scholar 

  143. Alasvandyari F, Mahdavi B, Hosseini SM (2017) Glycine betaine affects the antioxidant system and ion accumulation and reduces salinity-induced damage in safflower seedlings. Arch Biol Sci 69(1):139–147

    Article  Google Scholar 

  144. Rabbani G, Choi I (2018) Roles of osmolytes in protein folding and aggregation in cells and their biotechnological applications. Int J Biol Macromol 109:483–491

    Article  CAS  PubMed  Google Scholar 

  145. Matsuura HN, Rau MR, Fett-Neto AG (2014) Oxidative stress and production of bioactive monoterpene indole alkaloids: biotechnological implications. Biotechnol Lett 36(2):191–200

    Article  CAS  PubMed  Google Scholar 

  146. Tang Z, Yang L, Zu Y et al (2009) Variations of vinblastine accumulation and redox state affected by exogenous H2O2 in Catharanthus roseus (L.) G. Don. Plant Growth Regul 57(1):15–20

    Article  CAS  Google Scholar 

  147. Guo Z, Liu Y, Gong M et al (2013) Regulation of vinblastine biosynthesis in cell suspension cultures of Catharanthus roseus. Plant Cell Tiss Org 112(1):43–54

    Article  CAS  Google Scholar 

  148. Bechtold U, Penfold CA, Jenkins DJ et al (2016) Time-series transcriptomics reveals that AGAMOUS-LIKE22 affects primary metabolism and developmental processes in drought-stressed Arabidopsis. Plant Cell 28(2):345–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Xu Y, Freund DM, Hegeman AD et al (2022) Metabolic signatures of Arabidopsis thaliana abiotic stress responses elucidate patterns in stress priming, acclimation, and recovery. Stress Biol 3:86–102

    Google Scholar 

  150. Renault H, Roussel V, El Amrani A et al (2010) The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol 10(1):1–16

    Article  Google Scholar 

  151. Živanović B, Milić Komić S, Tosti T et al (2020) Leaf soluble sugars and free amino acids as important components of abscisic acid—mediated drought response in tomato. Plants (Basel) 9(9):1147

    Google Scholar 

  152. Paupière MJ, Tikunov Y, Schleiff E et al (2020) Reprogramming of tomato leaf metabolome by the activity of heat stress transcription factor HsfB1. Front Plant Sci 11:610599

    Google Scholar 

  153. Devkar V, Thirumalaikumar VP, Xue GP et al (2020) Multifaceted regulatory function of tomato SlTAF1 in the response to salinity stress. New Phytol 225(4):1681–1698

    Google Scholar 

  154. Cramer GR, Ergül A, Grimplet J et al (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomic 7(2):111–134

    Article  CAS  Google Scholar 

  155. Lecourieux F, Kappel C, Pieri P et al (2017) Dissecting the biochemical and transcriptomic effects of a locally applied heat treatment on developing Cabernet Sauvignon grape berries. Front Plant Sci 8:53

    Article  PubMed  PubMed Central  Google Scholar 

  156. Hochberg U, Degu A, Toubiana D et al (2013) Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response. BMC Plant Biol 13(1):1–16

    Article  Google Scholar 

  157. Barnaby JY, Rohila JS, Henry CG et al (2019) Physiological and metabolic responses of rice to reduced soil moisture: relationship of water stress tolerance and grain production. Int J Mol Sci 20(8):1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Glaubitz U, Erban A, Kopka J et al (2015) High night temperature strongly impacts TCA cycle, amino acid and polyamine biosynthetic pathways in rice in a sensitivity-dependent manner. J Exp Bot 66(20):6385–6397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gupta P, De B (2017) Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin, and gentisic acid levels in leaves of tolerant varieties. Plant Signal Behav 12(7):e1335845

    Article  PubMed  PubMed Central  Google Scholar 

  160. Sun C, Gao X, Fu J et al (2015) Metabolic response of maize (Zea mays L.) plants to combined drought and salt stress. Plant Soil 388(1):99–117

    Article  CAS  Google Scholar 

  161. Begcy K, Nosenko T, Zhou L et al (2019) Male sterility in maize after transient heat stress during the tetrad stage of pollen development. Plant Physiol 181(2):683–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Michaletti A, Naghavi MR, Toorchi M et al (2018) Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci Rep 8(1):1–18

    Article  CAS  Google Scholar 

  163. Wang X, Hou L, Lu Y et al (2018) Metabolic adaptation of wheat grain contributes to a stable filling rate under heat stress. J Exp Bot 69(22):5531–5545

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Guo R, Yang Z, Li F et al (2015) Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biol 15(1):1–13

    Article  Google Scholar 

  165. Fraser PD, Aharoni A, Hall RD et al (2020) Metabolomics should be deployed in the identification and characterization of gene-edited crops. Plant J 102(5):897–902

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisdair R. Fernie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhu, F., Sun, Y., Jadhav, S.S., Cheng, Y., Alseekh, S., Fernie, A.R. (2023). The Plant Metabolic Changes and the Physiological and Signaling Functions in the Responses to Abiotic Stress. In: Couée, I. (eds) Plant Abiotic Stress Signaling. Methods in Molecular Biology, vol 2642. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3044-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3044-0_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3043-3

  • Online ISBN: 978-1-0716-3044-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics