Skip to main content

Fast Identification of In Vivo Protein Phosphorylation Events Using Transient Expression in Leaf Mesophyll Protoplasts and Phos-tagTM SDS-PAGE

  • Protocol
  • First Online:
Plant Abiotic Stress Signaling

Abstract

Phosphorylation/dephosphorylation is a key posttranslational mechanism for signal transduction and amplification. Several techniques exist for assessing protein phosphorylation status, but each has its own drawbacks. The fast, straightforward, and low-tech approach described here uses transient overexpression of peptide-tagged proteins in Arabidopsis leaf mesophyll protoplasts and immunoblotting with Phos-tag™ SDS-PAGE and commercial anti-tag antibodies. We illustrate this with two relevant examples related to the SnRK1 protein kinase, which mediates metabolic stress signaling: Arabidopsis thaliana SnRK1 activation by T-loop (auto-)phosphorylation and SnRK1 phosphorylation of the Arabidopsis RAV1 transcription factor, which is involved in seed germination and early seedling development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hasan MM, Liu XD, Waseem M, Guang-Qian Y, Alabdallah NM, Jahan MS, Fang XW (2022) ABA activated SnRK2 kinases: an emerging role in plant growth and physiology. Plant Signal Behav 17:1–6

    Article  Google Scholar 

  2. Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci U S A 97:3730–3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Broeckx T, Hulsmans S, Rolland F (2016) The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function. J Exp Bot 67:6215–6252

    Article  CAS  PubMed  Google Scholar 

  4. Crepin N, Rolland F (2019) SnRK1 activation, signaling, and networking for energy homeostasis. Curr Opin Plant Biol 51:29–36

    Article  CAS  PubMed  Google Scholar 

  5. Nukarinen E, Nagele T, Pedrotti L, Wurzinger B, Mair A, Landgraf R, Bornke F, Hanson J, Teige M, Baena-Gonzalez E, Dröger-Laser W, Weckwerth W (2016) Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. Sci Rep 6:31697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cho HY, Wen TN, Wang YT, Shih MC (2016) Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence. J Exp Bot 67:2745–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carianopol CS, Chan AL, Dong S et al (2020) An abscisic acid-responsive protein interaction network for sucrose non-fermenting related kinase1 in abiotic stress response. Commun Biol 3:1–15

    Article  Google Scholar 

  8. Van Leene J, Eeckhout D, Gadeyne A, Matthijs HC, De Winne N, Persiau G, Van De Slijke E, Persyn F, Mertens T, Smagghe W, Crepin N, Broucke E, Van Damme D, Pleskot R, Rolland F, De Jaeger G (2022) Mapping of the plant SnRK1 kinase signaling network reveals a key regulatory role for the class II T6P synthase-like proteins. Nat Plants 8(11):1245–1261

    Article  PubMed  Google Scholar 

  9. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  10. Weekes J, Ball KL, Caudwell FB, Hardie DG (1993) Specificity determinants for the Amp-activated protein-kinase and its plant homolog analyzed using synthetic peptides. FEBS Lett 334:335–339

    Article  CAS  PubMed  Google Scholar 

  11. Halford NG, Hey S, Jhurreea D, Laurie S, McKibbin RS, Paul M, Zhang Y (2003) Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. J Exp Bot 54:382–375

    Article  Google Scholar 

  12. Johnson LN, Noble ME, Owen DJ (1996) Active and inactive protein kinases: structural basis for regulation. Cell 85:149–158

    Article  CAS  PubMed  Google Scholar 

  13. Kannan N, Neuwald AF (2005) Did protein kinase regulatory mechanisms evolve through elaboration of a simple structural component? J Mol Biol 351:956–972

    Article  CAS  PubMed  Google Scholar 

  14. Nolen B, Taylor S, Ghosh G (2004) Regulation of protein kinases; controlling activity through activation segment conformation. Mol Cell 15:661–675

    Article  CAS  PubMed  Google Scholar 

  15. Iyer GH, Garrod S, Woods VL Jr, Taylor SS (2005) Catalytic independent functions of a protein kinase as revealed by a kinase-dead mutant: study of the Lys72His mutant of cAMP-dependent kinase. J Mol Biol 351:1110–1122

    Article  CAS  PubMed  Google Scholar 

  16. Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signaling. Nature 448:938–942

    Article  CAS  PubMed  Google Scholar 

  17. Ramon M, Dang TVT, Broeckx T, Hulsmans S, Crepin N, Sheen J, Rolland F (2019) Default activation and nuclear translocation of the plant cellular energy sensor SnRK1 regulate metabolic stress responses and development. Plant Cell 31:1614–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Glab N, Oury C, Guerinier T, Domenichini S, Crozet P, Thomas M, Vidal J, Hodges M (2017) The impact of Arabidopsis thaliana SNF1-related-kinase 1 (SnRK1)-activating kinase 1 (SnAK1) and SnAK2 on SnRK1 phosphorylation status: characterization of a SnAK double mutant. Plant J 89:1031–1041

    Article  CAS  PubMed  Google Scholar 

  19. Wang P, Yan Y, Bai Y, Dong Y, Wei Y, Zeng H, Shi H (2021) Phosphorylation of RAV1/2 by KIN10 is essential for transcriptional activation of CAT6/7, which underlies oxidative stress response in cassava. Cell Rep 37:1–19

    Article  Google Scholar 

  20. Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ellen Broucke , Filip Rolland or Nathalie Crepin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Broucke, E., Rolland, F., Crepin, N. (2023). Fast Identification of In Vivo Protein Phosphorylation Events Using Transient Expression in Leaf Mesophyll Protoplasts and Phos-tagTM SDS-PAGE. In: Couée, I. (eds) Plant Abiotic Stress Signaling. Methods in Molecular Biology, vol 2642. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3044-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3044-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3043-3

  • Online ISBN: 978-1-0716-3044-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics