Skip to main content

Exons 45–55 Skipping Using Antisense Oligonucleotides in Immortalized Human DMD Muscle Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2640))

Abstract

Antisense oligonucleotides (AOs) have demonstrated high potential as a therapy for treating genetic diseases like Duchene muscular dystrophy (DMD). As a synthetic nucleic acid, AOs can bind to a targeted messenger RNA (mRNA) and regulate splicing. AO-mediated exon skipping transforms out-of-frame mutations as seen in DMD into in-frame transcripts. This exon skipping approach results in the production of a shortened but still functional protein product as seen in the milder counterpart, Becker muscular dystrophy (BMD). Many potential AO drugs have advanced from laboratory experimentation to clinical trials with an increasing interest in this area. An accurate and efficient method for testing AO drug candidates in vitro, before implementation in clinical trials, is crucial to ensure proper assessment of efficacy. The type of cell model used to examine AO drugs in vitro establishes the foundation of the screening process and can significantly impact the results. Previous cell models used to screen for potential AO drug candidates, such as primary muscle cell lines, have limited proliferative and differentiation capacity, and express insufficient amounts of dystrophin. Recently developed immortalized DMD muscle cell lines effectively addressed this challenge allowing for the accurate measurement of exon-skipping efficacy and dystrophin protein production. This chapter presents a procedure used to assess DMD exons 45–55 skipping efficiency and dystrophin protein production in immortalized DMD patient-derived muscle cells. Exons 45–55 skipping in the DMD gene is potentially applicable to 47% of patients. In addition, naturally occurring exons 45–55 in-frame deletion mutation is associated with an asymptomatic or remarkably mild phenotype as compared to shorter in-frame deletions within this region. As such, exons 45–55 skipping is a promising therapeutic approach to treat a wider group of DMD patients. The method presented here allows for improved examination of potential AO drugs before implementation in clinical trials for DMD.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51(6):919–928. https://doi.org/10.1016/0092-8674(87)90579-4

    Article  CAS  PubMed  Google Scholar 

  2. Walter MC, Reilich P (2017) Recent developments in Duchenne muscular dystrophy: facts and numbers. J Cachexia Sarcopenia Muscle 8(5):681–685. https://doi.org/10.1002/jcsm.12245

    Article  PubMed  PubMed Central  Google Scholar 

  3. Beggs AH, Hoffman EP, Snyder JR et al (1991) Exploring the molecular basis for variability among patients with Becker muscular dystrophy: dystrophin gene and protein studies. Am J Hum Genet 49(1):54–67

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Deconinck N, Dan B (2007) Pathophysiology of Duchenne muscular dystrophy: current hypotheses. Pediatr Neurol 36(1):1–7. https://doi.org/10.1016/j.pediatrneurol.2006.09.016

    Article  PubMed  Google Scholar 

  5. Klingler W, Jurkat-Rott K, Lehmann-Horn F et al (2013) The role of fibrosis in Duchenne muscular dystrophy. Acta Myol 31(3):184–195

    Google Scholar 

  6. Monaco AP, Bertelson CJ, Liechti-Gallati S et al (1988) An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2(1):90–95. https://doi.org/10.1016/0888-7543(88)90113-9

    Article  CAS  PubMed  Google Scholar 

  7. Muntoni F, Torelli S, Ferlini A (2003) Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2(12):731–740. https://doi.org/10.1016/s1474-4422(03)00585-4

    Article  CAS  PubMed  Google Scholar 

  8. Flanigan KM, Dunn DM, von Niederhausern A et al (2009) Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Hum Mutat 30(12):1657–1666. https://doi.org/10.1002/humu.21114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yazaki M, Yoshida K, Nakamura A et al (1999) Clinical characteristics of aged Becker muscular dystrophy patients with onset after 30 years. Eur Neurol 42(3):145–149. https://doi.org/10.1159/000008089

    Article  CAS  PubMed  Google Scholar 

  10. Le Rumeur E (2015) Dystrophin and the two related genetic diseases, Duchenne and Becker muscular dystrophies. Bosn J Basic Med Sci 15(3):14–20. https://doi.org/10.17305/bjbms.2015.636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rinaldi C, Wood MJA (2018) Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol 14(1):9–21. https://doi.org/10.1038/nrneurol.2017.148

    Article  CAS  PubMed  Google Scholar 

  12. Evers MM, Toonen LJ, van Roon-Mom WM (2015) Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliv Rev 87:90–103. https://doi.org/10.1016/j.addr.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  13. Niks EH, Aartsma-Rus A (2017) Exon skipping: a first in class strategy for Duchenne muscular dystrophy. Expert Opin Biol Ther 17(2):225–236. https://doi.org/10.1080/14712598.2017.1271872

    Article  CAS  PubMed  Google Scholar 

  14. Yokota T, Duddy W, Echigoya Y et al (2012) Exon skipping for nonsense mutations in Duchenne muscular dystrophy: too many mutations, too few patients? Expert Opin Biol Ther 12(9):1141–1152. https://doi.org/10.1517/14712598.2012.693469

    Article  CAS  PubMed  Google Scholar 

  15. Aoki Y, Nakamura A, Yokota T et al (2010) In-frame dystrophin following exon 51-skipping improves muscle pathology and function in the exon 52-deficient mdx mouse. Mol Ther 18(11):1995–2005. https://doi.org/10.1038/mt.2010.186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wein N, Vulin A, Findlay AR et al (2017) Efficient skipping of single exon duplications in DMD patient-derived cell lines using an antisense oligonucleotide approach. J Neuromuscul Dis 4(3):199–207. https://doi.org/10.3233/JND-170233

    Article  PubMed  Google Scholar 

  17. Maruyama R, Echigoya Y, Caluseriu O et al (2017) Systemic delivery of Morpholinos to skip multiple exons in a dog model of Duchenne muscular dystrophy. Methods Mol Biol 1565:201–213. https://doi.org/10.1007/978-1-4939-6817-6_17

    Article  CAS  PubMed  Google Scholar 

  18. Wurster CD, Ludolph AC (2018) Antisense oligonucleotides in neurological disorders. Ther Adv Neurol Disord 11:1–19. https://doi.org/10.1177/1756286418776932

    Article  CAS  Google Scholar 

  19. Aartsma-Rus A, Fokkema I, Verschuuren J et al (2009) Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30(3):293–299. https://doi.org/10.1002/humu.20918

    Article  PubMed  Google Scholar 

  20. Béroud C, Tuffery-Giraud S, Matsuo M et al (2007) Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy. Hum Mutat 28(2):196–202. https://doi.org/10.1002/humu.20428

    Article  CAS  PubMed  Google Scholar 

  21. Aoki Y, Yokota T, Nagata T et al (2012) Bodywide skipping of exons 45-55 in dystrophic mdx52 mice by systemic antisense delivery. Proc Natl Acad Sci U S A 109(34):13763–13768. https://doi.org/10.1073/pnas.1204638109

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dzierlega K, Yokota T (2020) Optimization of antisense-mediated exon skipping for Duchenne muscular dystrophy. Gene Ther. https://doi.org/10.1038/s41434-020-0156-6

  23. Nguyen Q, Yokota T (2017) Immortalized muscle cell model to test the exon skipping efficacy for Duchenne muscular dystrophy. J Pers Med 7(4):13. https://doi.org/10.3390/jpm7040013

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mamchaoui K, Trollet C, Bigot A et al (2011) Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skelet Muscle 1:34. https://doi.org/10.1186/2044-5040-1-34

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shimo T, Tachibana K, Saito K et al (2014) Design and evaluation of locked nucleic acid-based splice-switching oligonucleotides in vitro. Nucleic Acids Res 42(12):8174–8187. https://doi.org/10.1093/nar/gku512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saito T, Nakamura A, Aoki Y et al (2010) Antisense PMO found in dystrophic dog model was effective in cells from exon 7-deleted DMD patient. PLoS One 5(8):e12239. https://doi.org/10.1371/journal.pone.0012239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Echigoya Y, Lim KRQ, Melo D et al (2019) Exons 45-55 skipping using mutation-tailored cocktails of antisense Morpholinos in the DMD gene. Mol Ther 27(11):2005–2017. https://doi.org/10.1016/j.ymthe.2019.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Yokota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

He, M., Yokota, T. (2023). Exons 45–55 Skipping Using Antisense Oligonucleotides in Immortalized Human DMD Muscle Cells. In: Asakura, A. (eds) Skeletal Muscle Stem Cells. Methods in Molecular Biology, vol 2640. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3036-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3036-5_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3035-8

  • Online ISBN: 978-1-0716-3036-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics