Skip to main content

The oxDNA Coarse-Grained Model as a Tool to Simulate DNA Origami

  • Protocol
  • First Online:
DNA and RNA Origami

Abstract

This chapter introduces how to run molecular dynamics simulations for DNA origami using the oxDNA coarse-grained model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  PubMed  Google Scholar 

  2. Wagenbauer KF, Sigl C, Dietz H (2017) Gigadalton-scale shape-programmable DNA assemblies. Nature 552:78–83

    Article  CAS  PubMed  Google Scholar 

  3. Ramezani H, Dietz H (2020) Building machines with DNA molecules. Nat Rev Genet 21:5–26

    Article  CAS  PubMed  Google Scholar 

  4. Zhou L, Marras AE, Huang C-M, Castro CE, Su HJ (2018) Paper origami-inspired design and actuation of DNA nanomachines with complex motions. Small 14:1802580

    Article  Google Scholar 

  5. Castro CE, Kilchherr F, Kim D-N, Shiao EL, Wauer T, Wortmann P, Bathe M, Dietz H (2011) A primer to scaffolded DNA origami. Nat Methods 8:221–229

    Article  CAS  PubMed  Google Scholar 

  6. Kim D-N, Kilchherr F, Dietz H, Bathe M (2012) Quantitative prediction of 3D solution shape flexibility of nucleic acid nanostructures. Nucleic Acids Res 40:2862–2868

    Article  CAS  PubMed  Google Scholar 

  7. Maffeo C, Aksimentiev A (2020) MrDNA: a multi-resolution model for predicting the structure and dynamics of DNA systems. Nucleic Acids Res 48, Advance Article

    Google Scholar 

  8. Yoo J, Aksimentiev A (2013) In situ structure and dynamics of DNA origami determined through molecular dynamics simulations. Proc Natl Acad Sci U S A 110:20099–20104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ouldridge TE, Louis AA, Doye JPK (2011) Structural, mechanical and thermodynamic properties of a coarse-grained DNA model. J Chem Phys 134:085101

    Article  PubMed  Google Scholar 

  10. Šulc P, Romano F, Ouldridge TE, Rovigatti L, Doye JPK, Louis AA (2012) Introducing sequence-dependent interactions into a coarse-grained DNA model. J Chem Phys 137:135101

    Article  PubMed  Google Scholar 

  11. Snodin BEK, Randisi F, Mosayebi M, Šulc P, Schreck JS, Romano F, Ouldridge TE, Tsukanov R, Nir E, Louis AA, Doye JPK (2015) Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. J Chem Phys 142:234901

    Article  PubMed  Google Scholar 

  12. Snodin BEK, Schreck JS, Romano F, Louis AA, Doye JPK (2019) Coarse-grained modelling of the structural properties of DNA origami. Nucleic Acids Res 47:1585–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tortora MMC, Mishra G, Prešern D, Doye JPK (2020) Chiral shape fluctuations and the origin of chirality in cholesteric phases of DNA origamis. Sci. Adv. 6:eaaw8331

    Google Scholar 

  14. Shi Z, Castro CE, Arya G (2017) Conformational dynamics of mechanically compliant DNA nanostructures from coarse-grained molecular dynamics simulations. ACS Nano 11:4617–4630

    Article  CAS  PubMed  Google Scholar 

  15. Sharma R, Schreck JS, Romano F, Louis AA, Doye JPK (2017) Characterizing the motion of jointed DNA nanostructures using a coarse-grained model. ACS Nano 11:12426–12435

    Article  CAS  PubMed  Google Scholar 

  16. Huang CM, Kucinic A, Le J, Castro CE, Su H-J (2019) Uncertainty quantification of a DNA origami mechanism using a coarse-grained model and kinematic variance analysis. Nanoscale 11:1647–1660

    Article  CAS  PubMed  Google Scholar 

  17. Engel MC, Romano F, Louis AA, Doye JPK (2020) Measuring internal forces in single-stranded DNA: application to a DNA force clamp. J Chem Theory Comput. Submitted

    Google Scholar 

  18. Engel MC, Smith DM, Jobst MA, Sajfutdinow M, Liedl T, Romano F, Rovigatti L, Louis AA, Doye JPK (2018) Force-induced unravelling of DNA origami. ACS Nano 12:6734–6747

    Article  CAS  PubMed  Google Scholar 

  19. Snodin BEK, Romano F, Rovigatti L, Ouldridge TE, Louis AA, Doye JPK (2016) Direct simulation of the self-assembly of a small DNA origami. ACS Nano 10:1724–1737

    Article  CAS  PubMed  Google Scholar 

  20. Shi Z, Arya G (2020) Free-energy landscapes of salt-actuated reconfigurable DNA nanodevices. Nucleic Acids Res 48:548–560

    Article  CAS  PubMed  Google Scholar 

  21. Martin TG, Dietz H (2012) Magnesium-free self-assembly of multi-layer DNA objects. Nat Commun 3:1103

    Article  PubMed  Google Scholar 

  22. Gerling T, Wagenbauer KF, Neuner AM, Dietz H (2015) Dynamic DNA devices and assemblies formed by shape complementary, non-base pairing 3D components. Science 347:1446–1452

    Article  CAS  PubMed  Google Scholar 

  23. Henrich O, Gutierrez-Fosado YA, Curk T, Ouldridge TE (2018) Coarse-grained simulation of DNA using LAMMPS. Eur Phys J E 41:57

    Article  PubMed  Google Scholar 

  24. Šulc P, Romano F, Ouldridge TE, Doye JPK, Louis AA (2014) A nucleotide-level coarse-grained model of RNA. J Chem Phys 140:235102

    Article  PubMed  Google Scholar 

  25. Suma A, Poppleton E, Matthies M, Šulc P, Romano F, Louis AA, Doye JPK, Micheletti C, Rovigatti L (2019) TacoxDNA: a user-friendly web server for simulations of complex DNA structures, from single strands to origami. J Comput Chem 40:2586–2595

    Article  CAS  PubMed  Google Scholar 

  26. Poppleton E, Bohlin J, Matthies M, Sharma S, Zhang F, Šulc P (2020) Design, optimization, and analysis of large DNA and RNA nanostructures through interactive visualization, editing, and molecular simulation. Nucleic Acids Res. Submitted. bioRXiv 2020.01.24.917419

    Google Scholar 

  27. Bai X-C, Martin TG, Scheres SHW, Dietz H (2012) Cryo-EM structure of a 3D DNA-origami object. Proc Natl Acad Sci U S A 109:20012–20017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Siavashpouri M, Wachauf CH, Zakhary MJ, Praetorius F, Dietz H, Dogic Z (2017) Molecular engineering of chiral colloidal liquid crystals using DNA origami. Nat Mater 16:849–856

    Article  CAS  PubMed  Google Scholar 

  29. Douglas SM, Marblestone AH, Teerapittayanon S, Vazquez A, Church GM, Shih WM (2009) Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37:5001–5006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Williams S, Lund K, Lin C, Wonka P, Lindsay S, Yan H (2009) Tiamat: a three-dimensional editing tool for complex DNA structures. In: Lecture notes in computer science, vol 5347. Springer, Berlin/Heidelberg, pp 90–101

    Google Scholar 

  31. Benson E, Mohammed A, Gardell J, Masich S, Czeizler E, Orponen P, Högberg B (2015) DNA rendering of polyhedral meshes at the nanoscale. Nature 523:441–444

    Article  CAS  PubMed  Google Scholar 

  32. de Llano E, Miao H, Ahmadi Y, Wilson AJ, Beeby M, Viola I, Barisic I (2020) Adenita: interactive 3D modelling and visualization of DNA nanostructures. bioRxiv

    Google Scholar 

  33. Veneziano R, Ratanalert S, Zhang F, Yan H, Chiu W, Bathe M (2016) Designer nanoscale DNA assemblies programmed from the top down. Science 352:1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jun H, Zhang F, Shepherd T, Ratanalert S, Qi X, Yan H, Bathe M (2019) Autonomously designed free-form 2D DNA origami. Sci Adv 5:eaav0655

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jun H, Shepherd TR, Zhang K, Bricker WP, Li S, Chiu W, Bathe M (2019) Automated sequence design of 3D polyhedral wireframe DNA origami with honeycomb edges. ACS Nano 13:2083–2093

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rovigatti L, Šulc P, Reguly IZ, Romano F (2015) A comparison between parallelization approaches in molecular dynamics simulations on GPUs. J Comput Chem 36:1–8

    Article  CAS  PubMed  Google Scholar 

  37. Dietz H, Douglas SM, Shih WM (2009) Folding DNA into twisted and curved nanoscale shapes. Science 325:725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity-rescaling. J Chem Phys 126:014101

    Article  PubMed  Google Scholar 

  39. Russo J, Tartaglia P, Sciortino F (2009) Reversible gels of patchy particles: role of the valence. J Chem Phys 131:014504

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for support from the EPSRC Centre for Doctoral training, Theory and Modelling in Chemical Sciences, under grant EP/L015722/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. K. Doye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Doye, J.P.K. et al. (2023). The oxDNA Coarse-Grained Model as a Tool to Simulate DNA Origami. In: Valero, J. (eds) DNA and RNA Origami. Methods in Molecular Biology, vol 2639. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3028-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3028-0_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3027-3

  • Online ISBN: 978-1-0716-3028-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics