Skip to main content

Computer-Aided Design and Production of RNA Origami as Protein Scaffolds and Biosensors

  • Protocol
  • First Online:
DNA and RNA Origami

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2639))

Abstract

RNA nanotechnology is able to take advantage of the modularity of RNA to build a wide variety of structures and functional devices from a common set of structural modules. The RNA origami architecture harnesses the property of RNA to fold as it is being enzymatically synthesized by the RNA polymerase and enables the design of single-stranded devices that integrate multiple structural and functional RNA motifs. Here, we provide detailed procedures on how to design and characterize RNA origami structures. The process is illustrated by two examples: one that forms lattices and another example that acts as biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Winfree E et al (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693):539–544

    Article  CAS  PubMed  Google Scholar 

  2. He Y et al (2008) Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452:198

    Article  CAS  PubMed  Google Scholar 

  3. Ke Y et al (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338(6111):1177–1183

    Article  CAS  PubMed  Google Scholar 

  4. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302

    Article  CAS  PubMed  Google Scholar 

  5. Guo P (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5:833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chworos A et al (2004) Building programmable jigsaw Puzzles with RNA. Science 306(5704):2068–2072

    Article  CAS  PubMed  Google Scholar 

  7. Geary C, Rothemund PWK, Andersen ES (2014) A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345(6198):799–804

    Article  CAS  PubMed  Google Scholar 

  8. Batey RT, Rambo RP, Doudna JA (1999) Tertiary motifs in RNA structure and folding. Angew Chem Int Ed 38(16):2326–2343

    Article  CAS  Google Scholar 

  9. Li M et al (2018) In vivo production of RNA nanostructures via programmed folding of single-stranded RNAs. Nat Commun 9(1):2196

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jepsen MDE et al (2018) Development of a genetically encodable FRET system using fluorescent RNA aptamers. Nat Commun 9(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jasinski D et al (2017) Advancement of the emerging field of RNA nanotechnology. ACS Nano 11(2):1142–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Krissanaprasit A et al (2019) Genetically encoded, functional single-strand RNA origami: anticoagulant. Adv Mater 31(21):1808262

    Article  Google Scholar 

  13. Simmel FC, Yurke B, Singh HR (2019) Principles and applications of nucleic acid strand displacement reactions. Chem Rev 119(10):6326–6369

    Article  CAS  PubMed  Google Scholar 

  14. Liu D et al (2020) Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures. Nat Chem 12(3):249–259

    Article  CAS  PubMed  Google Scholar 

  15. Shu D et al (2011) Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat Nanotechnol 6:658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Geary CW, Andersen ES (2014) Design principles for single-stranded RNA origami structures. In: DNA computing and molecular programming. Springer International Publishing, Cham

    Google Scholar 

  17. Molinaro M, Tinoco I Jr (1995) Use of ultra stable UNCG tetraloop hairpins to fold RNA structures: thermodynamic and spectroscopic applications. Nucl Acids Res 23(15):3056–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fu TJ, Seeman NC (1993) DNA double-crossover molecules. Biochemistry 32(13):3211–3220

    Article  CAS  PubMed  Google Scholar 

  19. Chang KY, Tinoco I Jr (1994) Characterization of a “kissing” hairpin complex derived from the human immunodeficiency virus genome. Proc Natl Acad Sci U S A 91(18):8705–8709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paige JS, Wu KY, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333(6042):642–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dolgosheina EV et al (2014) RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem Biol 9(10):2412–2420

    Article  CAS  PubMed  Google Scholar 

  22. Montange RK, Batey RT (2006) Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441(7097):1172–1175

    Article  CAS  PubMed  Google Scholar 

  23. Geary C et al (2021) RNA origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds. Nat Chem 13(6):549–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zadeh JN, Wolfe BR, Pierce NA (2011) Nucleic acid sequence design via efficient ensemble defect optimization. J Comput Chem 32(3):439–452

    Article  CAS  PubMed  Google Scholar 

  25. Severcan I et al (2010) A polyhedron made of tRNAs. Nat Chem 2(9):772–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grabow WW et al (2011) Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett 11(2):878–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lorenz R et al (2011) ViennaRNA package 2.0. Algorithms Mol Biol 6(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lu C et al (2008) Crystal structures of the SAM-III/SMK riboswitch reveal the SAM-dependent translation inhibition mechanism. Nat Struct Mol Biol 15(10):1076–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the European Union’s Horizon 2020 Research and Innovation Program, as part of the Interactive Training Network, DNA Robotics, under the Marie Sklodowska-Curie grant agreement n° 765703.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebbe Sloth Andersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vallina, N.S., Geary, C., Jepsen, M., Andersen, E.S. (2023). Computer-Aided Design and Production of RNA Origami as Protein Scaffolds and Biosensors. In: Valero, J. (eds) DNA and RNA Origami. Methods in Molecular Biology, vol 2639. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3028-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3028-0_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3027-3

  • Online ISBN: 978-1-0716-3028-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics