Skip to main content

Innovative Advances in Plant Genotyping

  • Protocol
  • First Online:
Plant Genotyping

Abstract

Over the past decade, advances in plant genotyping have been critical in enabling the identification of genetic diversity, in understanding evolution, and in dissecting important traits in both crops and native plants. The widespread popularity of single-nucleotide polymorphisms (SNPs) has prompted significant improvements to SNP-based genotyping, including SNP arrays, genotyping by sequencing, and whole-genome resequencing. More recent approaches, including genotyping structural variants, utilizing pangenomes to capture species-wide genetic diversity and exploiting machine learning to analyze genotypic data sets, are pushing the boundaries of what plant genotyping can offer. In this chapter, we highlight these innovations and discuss how they will accelerate and advance future genotyping efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas WJW, Anthony JM, Dobrowolski MP, Krauss SL (2021) Optimising the conservation of genetic diversity of the last remaining population of a critically endangered shrub. AoB Plants 13:5. https://doi.org/10.1093/aobpla/plab005

    Article  CAS  Google Scholar 

  2. Scheben A, Batley J, Edwards D (2018) Revolution in genotyping platforms for crop improvement. In: Advances in biochemical engineering/biotechnology. Springer Science and Business Media Deutschland GmbH, pp 37–52

    Google Scholar 

  3. Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD et al (2020) Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Mol Plant 13:187–214. https://doi.org/10.1016/j.molp.2020.01.008

    Article  CAS  Google Scholar 

  4. Bayer PE, Edwards D (2021) Machine learning in agriculture: from silos to marketplaces. Plant Biotechnol J 19:648–650. https://doi.org/10.1111/pbi.13521

    Article  Google Scholar 

  5. Patel DA, Zander M, Dalton-Morgan J, Batley J (2015) Advances in plant genotyping: where the future will take us. In: Methods in molecular biology. Humana, pp 1–11

    Google Scholar 

  6. Scheben A, Batley J, Edwards D (2017) Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol J 15:149–161. https://doi.org/10.1111/PBI.12645

    Article  CAS  Google Scholar 

  7. Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney RK et al (2017) Crop breeding chips and genotyping platforms: Progress, challenges, and perspectives. Mol Plant 10:1047–1064. https://doi.org/10.1016/j.molp.2017.06.008

    Article  CAS  Google Scholar 

  8. Varshney RK, Pandey MK, Bohra A, Singh VK, Thudi M, Saxena RK (2019) Toward the sequence-based breeding in legumes in the post-genome sequencing era. Theor Appl Genet 132:797–816. https://doi.org/10.1007/S00122-018-3252-x

    Article  CAS  Google Scholar 

  9. LaFramboise T (2009) Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res 37:4181–4193. https://doi.org/10.1093/nar/gkp552

    Article  CAS  Google Scholar 

  10. Quezada-Martinez D, Zou J, Zhang W, Meng J, Batley J, Mason AS (2022) Allele segregation analysis of F1 hybrids between independent Brassica allohexaploid lineages. Chromosoma 131:147–161. https://doi.org/10.1007/S00412-022-00774-3

    Article  CAS  Google Scholar 

  11. Yang H, Mohd Saad NS, Ibrahim MI, Bayer PE, Neik TX, Severn-Ellis AA et al (2021) Candidate Rlm6 resistance genes against Leptosphaeria. maculans identified through a genome-wide association study in Brassica juncea (L.) Czern. Theor Appl Genet 1:3. https://doi.org/10.1007/s00122-021-03803-4

    Article  CAS  Google Scholar 

  12. Bianco L, Cestaro A, Linsmith G, Muranty H, Denancé C, Théron A et al (2016) Development and validation of the Axiom®Apple480K SNP genotyping array. Plant J 86:62–74. https://doi.org/10.1111/tpj.13145

    Article  CAS  Google Scholar 

  13. Allard A, Bink MCAM, Martinez S, Kelner JJ, Legave JM, di Guardo M et al (2016) Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population. J Exp Bot 67:2875–2888. https://doi.org/10.1093/jxb/erw130

    Article  CAS  Google Scholar 

  14. Gross BL, Henk AD, Richards CM, Fazio G, Volk GM (2014) Genetic diversity in Malus × domestica (Rosaceae) through time in response to domestication. Am J Bot 101:1770–1779. https://doi.org/10.3732/ajb.1400297

    Article  Google Scholar 

  15. Sun C, Dong Z, Zhao L, Ren Y, Zhang N, Chen F (2020) The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol J 18:1354–1360. https://doi.org/10.1111/pbi.13361

    Article  CAS  Google Scholar 

  16. Keeble-Gagnère G, Pasam R, Forrest KL, Wong D, Robinson H, Godoy J et al (2021) Novel design of imputation-enabled SNP arrays for breeding and research applications supporting multi-species hybridization. Front Plant Sci 12:756877. https://doi.org/10.3389/fpls.2021.756877

    Article  Google Scholar 

  17. Kaur S, Keeble-Gagnere G, Pasak RK, Hayden M (2020) Pulse pipeline integration to become more efficient. GRDC, Groundcover

    Google Scholar 

  18. Hyun DY, Sebastin R, Lee KJ, Lee GA, Shin MJ, Kim SH et al (2020) Genotyping-by-sequencing derived single nucleotide polymorphisms provide the first well-resolved phylogeny for the genus Triticum (Poaceae). Front Plant Sci 11:688. https://doi.org/10.3389/fpls.2020.00688

    Article  Google Scholar 

  19. Darrier B, Russell J, Milner SG, Hedley PE, Shaw PD, Macaulay M et al (2019) A comparison of mainstream genotyping platforms for the evaluation and use of barley genetic resources. Front Plant Sci 10:544. https://doi.org/10.3389/fpls.2019.00544

    Article  Google Scholar 

  20. Chu J, Zhao Y, Beier S, Schulthess AW, Stein N, Philipp N et al (2020) Suitability of single-nucleotide polymorphism arrays versus genotyping-by-sequencing for genebank genomics in wheat. Front Plant Sci 11:42. https://doi.org/10.3389/fpls.2020.00042

    Article  Google Scholar 

  21. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. https://doi.org/10.1371/journal.pone.0019379

    Article  CAS  Google Scholar 

  22. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253. https://doi.org/10.1371/journal.pone.0032253

    Article  CAS  Google Scholar 

  23. Toonen RJ, Puritz JB, Forsman ZH, Whitney JL, Fernandez-Silva I, Andrews KR et al (2013) ezRAD: a simplified method for genomic genotyping in non-model organisms. PeerJ 2013:e203. https://doi.org/10.7717/peerj.203

    Article  Google Scholar 

  24. Yang GQ, Chen YM, Wang JP, Guo C, Zhao L, Wang XY et al (2016) Development of a universal and simplified ddRAD library preparation approach for SNP discovery and genotyping in angiosperm plants. Plant Methods 12:39. https://doi.org/10.1186/S13007-016-0139-1

    Article  Google Scholar 

  25. Ali OA, O’Rourke SM, Amish SJ, Meek MH, Luikart G, Jeffres C et al (2016) RAD capture (Rapture): flexible and efficient sequence-based genotyping. Genetics 202:389–400. https://doi.org/10.1534/genetics.115.183665

    Article  CAS  Google Scholar 

  26. Suchan T, Pitteloud C, Gerasimova NS, Kostikova A, Schmid S, Arrigo N et al (2016) Hybridization capture using RAD probes (hyRAD), a new tool for performing genomic analyses on collection specimens. PLoS One 11:e0151651. https://doi.org/10.1371/journal.pone.0151651

    Article  CAS  Google Scholar 

  27. Guppy JL, Jones DB, Kjeldsen SR, le Port A, Khatkar MS, Wade NM et al (2020) Development and validation of a RAD-Seq target-capture based genotyping assay for routine application in advanced black tiger shrimp (Penaeus monodon) breeding programs. BMC Genomics 21:541. https://doi.org/10.1186/S12864-020-06960-w

    Article  CAS  Google Scholar 

  28. Sun X, Liu D, Zhang X, Li W, Liu H, Hong W et al (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One 8:e58700. https://doi.org/10.1371/journal.pone.0058700

    Article  CAS  Google Scholar 

  29. Geng X, Jiang C, Yang J, Li W, Liu H, Hong W et al (2016) Rapid identification of candidate genes for seed weight using the SLAF-Seq method in Brassica napus. PLoS One 11:e0147580. https://doi.org/10.1371/journal.pone.0147580

    Article  CAS  Google Scholar 

  30. Wei Q, Wang W, Hu T, Hu H, Wang J, Bao C (2020) Construction of a SNP-based genetic map using SLAF-Seq and QTL analysis of morphological traits in eggplant. Front Genet 11:178. https://doi.org/10.3389/fgene.2020.00178

    Article  CAS  Google Scholar 

  31. Chen Z, He Y, Iqbal Y, Shi Y, Huang H, Yi Z (2022) Investigation of genetic relationships within three Miscanthus species using SNP markers identified with SLAF-seq. BMC Genomics 23:43. https://doi.org/10.1186/S12864-021-08277-8

    Article  CAS  Google Scholar 

  32. Bayer PE, Ruperao P, Mason AS, Stiller J, Chan CKK, Hayashi S et al (2015) High-resolution skim genotyping by sequencing reveals the distribution of crossovers and gene conversions in Cicer arietinum and Brassica napus. Theor Appl Genet 128:1039–1047. https://doi.org/10.1007/S00122-015-2488-y

    Article  Google Scholar 

  33. Malmberg MM, Barbulescu DM, Drayton MC, Shinozuka M, Thakur P, Ogaji YO et al (2018) Evaluation and recommendations for routine genotyping using skim whole genome re-sequencing in canola. Front Plant Sci 9:1809. https://doi.org/10.3389/fpls.2018.01809

    Article  Google Scholar 

  34. Lu X, Xiong Q, Cheng T, Li QT, Liu XL, Bi YD et al (2017) A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Mol Plant 10:670–684. https://doi.org/10.1016/j.molp.2017.03.006

    Article  CAS  Google Scholar 

  35. Hu Z, Deng G, Mou H, Xu Y, Chen L, Yang J et al (2018) A re-sequencing-based ultra-dense genetic map reveals a gummy stem blight resistance-associated gene in Cucumis melo. DNA Res 25:1–10. https://doi.org/10.1093/dnares/dsx033

    Article  CAS  Google Scholar 

  36. Lu K, Wei L, Li X, Wang Y, Wu J, Liu M et al (2019) Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun 10:1154. https://doi.org/10.1038/s41467-019-09134-9

    Article  CAS  Google Scholar 

  37. He C, Holme J, Anthony J (2014) SNP genotyping: the KASP assay. In: Methods in molecular biology. Humana, pp 75–86

    Google Scholar 

  38. Steele KA, Quinton-Tulloch MJ, Amgai RB, Dhakal R, Khatiwada SP, Vyas D et al (2018) Accelerating public sector rice breeding with high-density KASP markers derived from whole genome sequencing of indica rice. Mol Breed 38:38. https://doi.org/10.1007/S11032-018-0777-2

    Article  Google Scholar 

  39. Zhao S, Li A, Li C, Xia H, Zhao C, Zhang Y et al (2017) Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut. Electron J Biotechnol 25:9–12. https://doi.org/10.1016/j.ejbt.2016.10.010

    Article  Google Scholar 

  40. Rehman SU, Sher MA, Saddique MAB, Ali Z, Khan MA, Mao X et al (2021) Development and exploitation of KASP assays for genes underpinning drought tolerance among wheat cultivars from Pakistan. Front Genet 12:684702. https://doi.org/10.3389/fgene.2021.684702

    Article  CAS  Google Scholar 

  41. van de Wouw AP, Zhang Y, Saad NSM, Yang H, Sheedy E, Elliott CE et al (2022) Molecular markers for identifying resistance genes in Brassica napus. Agronomy 12:985. https://doi.org/10.3390/agronomy12050985

    Article  CAS  Google Scholar 

  42. Mahmoud M, Gobet N, Cruz-Dávalos DI, Mounier N, Dessimoz C, Sedlazeck FJ (2019) Structural variant calling: the long and the short of it. Genome Biol 20:246. https://doi.org/10.1186/S13059-019-1828-7

    Article  Google Scholar 

  43. Bayer PE, Scheben A, Golicz AA, Yuan Y, Faure S, Lee HT et al (2021) Modelling of gene loss propensity in the pangenomes of three Brassica species suggests different mechanisms between polyploids and diploids. Plant Biotechnol J 19:2488–2500. https://doi.org/10.1111/pbi.13674

    Article  CAS  Google Scholar 

  44. Zhou Y, Zhang Z, Bao Z, Li H, Lyu Y, Zan Y et al (2022) Graph pangenome captures missing heritability and empowers tomato breeding. Nature 606:527–534. https://doi.org/10.1038/s41586-022-04808-9

    Article  CAS  Google Scholar 

  45. Edwards D, Batley J (2022) Graph pangenomes find missing heritability. Nat Genet 54:919–920. https://doi.org/10.1038/s41588-022-01099-8

    Article  CAS  Google Scholar 

  46. Yuan Y, Bayer PE, Batley J, Edwards D (2021) Current status of structural variation studies in plants. Plant Biotechnol J 19:2153–2163. https://doi.org/10.1111/pbi.13646

    Article  Google Scholar 

  47. Mabire C, Duarte J, Darracq A, Pirani A, Rimbert H, Madur D et al (2019) High throughput genotyping of structural variations in a complex plant genome using an original Affymetrix® axiom® array. BMC Genomics 20:848. https://doi.org/10.1186/S12864-019-6136-9

    Article  Google Scholar 

  48. Oluwadare O, Highsmith M, Cheng J (2019) An overview of methods for reconstructing 3-D chromosome and genome structures from Hi-C data. Biol Proced Online 21:7. https://doi.org/10.1186/S12575-019-0094-0

    Article  Google Scholar 

  49. Yuan Y, Chung CYL, Chan TF (2020) Advances in optical mapping for genomic research. Comput Struct Biotechnol J 18:2051–2062. https://doi.org/10.1016/j.csbj.2020.07.018

    Article  CAS  Google Scholar 

  50. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D et al (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20:207–211. https://doi.org/10.1038/2524

    Article  CAS  Google Scholar 

  51. Dellinger AE, Saw SM, Goh LK, Seielstad M, Young TL, Li YJ (2010) Comparative analyses of seven algorithms for copy number variant identification from single nucleotide polymorphism arrays. Nucleic Acids Res 38:e105. https://doi.org/10.1093/nar/gkq040

    Article  CAS  Google Scholar 

  52. Mérot C, Oomen RA, Tigano A, Wellenreuther M (2020) A roadmap for understanding the evolutionary significance of structural genomic variation. Trends Ecol Evol 35:561–572. https://doi.org/10.1016/j.tree.2020.03.002

    Article  Google Scholar 

  53. Wold J, Koepfli KP, Galla SJ, Eccles D, Hogg CJ, le Lec MF et al (2021) Expanding the conservation genomics toolbox: incorporating structural variants to enhance genomic studies for species of conservation concern. Mol Ecol 30:5949–5965. https://doi.org/10.1111/mec.16141

    Article  Google Scholar 

  54. Du XY, Kuo LY, Zuo ZY, Li DZ, Lu JM (2022) Structural variation of plastomes provides key insight into the deep phylogeny of ferns. Front Plant Sci 13:862772. https://doi.org/10.3389/fpls.2022.862772

    Article  Google Scholar 

  55. Li A, Liu A, Wu S, Qu K, Hu H, Yang J et al (2022) Comparison of structural variants in the whole genome sequences of two Medicago truncatula ecotypes: Jemalong A17 and R108. BMC Plant Biol 22:77. https://doi.org/10.1186/S12870-022-03469-0

    Article  CAS  Google Scholar 

  56. Nelson TC, Monnahan PJ, McIntosh MK, Anderson K, MacArthur-Waltz E, Finseth FR et al (2019) Extreme copy number variation at a tRNA ligase gene affecting phenology and fitness in yellow monkeyflowers. Mol Ecol 28:1460–1475. https://doi.org/10.1111/mec.14904

    Article  CAS  Google Scholar 

  57. Coletta RD, Qiu Y, Ou S, Hufford MB, Hirsch CN (2021) How the pan-genome is changing crop genomics and improvement. Genome Biol 22:3. https://doi.org/10.1186/S13059-020-02224-8

    Article  Google Scholar 

  58. Gage JL, Vaillancourt B, Hamilton JP, Manrique-Carpintero NC, Gustafson TJ, Barry K et al (2019) Multiple maize reference genomes impact the identification of variants by genome-wide association study in a diverse inbred panel. Plant Genome 12:180069. https://doi.org/10.3835/plantgenome2018.09.0069

    Article  CAS  Google Scholar 

  59. Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D (2020) Plant pan-genomes are the new reference. Nat Plants 6:914–920. https://doi.org/10.1038/s41477-020-0733-0

    Article  Google Scholar 

  60. Petereit J, Bayer PE, Thomas WJW, Fernandez CGT, Amas J, Zhang Y et al (2022) Pangenomics and crop genome adaptation in a changing climate. Plan Theory 11:1949. https://doi.org/10.3390/plants11151949

    Article  Google Scholar 

  61. Golicz AA, Bayer PE, Bhalla PL, Batley J, Edwards D (2020) Pangenomics comes of age: from bacteria to plant and animal applications. Trends Genet 36:132–145. https://doi.org/10.1016/j.tig.2019.11.006

    Article  CAS  Google Scholar 

  62. Ou L, Li D, Lv J, Chen W, Zhang Z, Li X et al (2018) Pan-genome of cultivated pepper (Capsicum) and its use in gene presence–absence variation analyses. New Phytol 220:360–363. https://doi.org/10.1111/nph.15413

    Article  Google Scholar 

  63. Zhou P, Silverstein KAT, Ramaraj T, Guhlin J, Denny R, Liu J et al (2017) Exploring structural variation and gene family architecture with de novo assemblies of 15 Medicago genomes. BMC Genomics 18:261. https://doi.org/10.1186/S12864-017-3654-1

    Article  Google Scholar 

  64. Zhao Q, Feng Q, Lu H, Li Y, Wang A, Tian Q et al (2018) Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet 50:278–284. https://doi.org/10.1038/s41588-018-0041-z

    Article  CAS  Google Scholar 

  65. Zhang B, Zhu W, Diao S, Wu X, Lu J, Ding CJ et al (2019) The poplar pangenome provides insights into the evolutionary history of the genus. Commun Biol 2:215. https://doi.org/10.1038/s42003-019-0474-7

    Article  Google Scholar 

  66. Ruperao P, Thirunavukkarasu N, Gandham P, Selvanayagam S, Govindaraj M, Nebie B et al (2021) Sorghum pan-genome explores the functional utility for genomic-assisted breeding to accelerate the genetic gain. Front Plant Sci 12:666342. https://doi.org/10.3389/fpls.2021.666342

    Article  Google Scholar 

  67. Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee HT, Chan CKK et al (2017) The pangenome of hexaploid bread wheat. Plant J 90:1007–1013. https://doi.org/10.1111/tpj.13515

    Article  CAS  Google Scholar 

  68. Hübner S, Bercovich N, Todesco M, Mandel JR, Odenheimer J, Ziegler E et al (2018) Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nat Plants 5:54–62. https://doi.org/10.1038/s41477-018-0329-0

    Article  CAS  Google Scholar 

  69. Gordon SP, Contreras-Moreira B, Woods DP, des Marais DL, Burgess D, Shu S et al (2017) Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat Commun 8:2184. https://doi.org/10.1038/s41467-017-02292-8

    Article  CAS  Google Scholar 

  70. Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM et al (2019) The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet 51:1044–1051. https://doi.org/10.1038/s41588-019-0410-2

    Article  CAS  Google Scholar 

  71. Hurgobin B, Golicz AA, Bayer PE, Chan CKK, Tirnaz S, Dolatabadian A et al (2018) Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnol J 16:1265–1274. https://doi.org/10.1111/pbi.12867

    Article  CAS  Google Scholar 

  72. Li Y, Zhou G, Ma J, Jiang W, Jin L, Zhang Z et al (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32:1045–1052. https://doi.org/10.1038/nbt.2979

    Article  CAS  Google Scholar 

  73. Zhao J, Bayer PE, Ruperao P, Saxena RK, Khan AW, Golicz AA et al (2020) Trait associations in the pangenome of pigeon pea (Cajanus cajan). Plant Biotechnol J 18:1946–1954. https://doi.org/10.1111/pbi.13354

    Article  CAS  Google Scholar 

  74. Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z et al (2018) Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557:43–49. https://doi.org/10.1038/s41586-018-0063-9

    Article  CAS  Google Scholar 

  75. Tao Y, Zhao X, Mace E, Henry R, Jordan D (2019) Exploring and exploiting pan-genomics for crop improvement. Mol Plant 12:156–169. https://doi.org/10.1016/j.molp.2018.12.016

    Article  CAS  Google Scholar 

  76. Golicz AA, Batley J, Edwards D (2016) Towards plant pangenomics. Plant Biotechnol J 14:1099–1105. https://doi.org/10.1111/pbi.12499

    Article  Google Scholar 

  77. Song JM, Guan Z, Hu J, Guo C, Yang Z, Wang S et al (2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants 6:34–45. https://doi.org/10.1038/s41477-019-0577-7

    Article  CAS  Google Scholar 

  78. Li H, Wang S, Chai S, Yang Z, Zhang Q, Xin H et al (2022) Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nat Commun 13:682. https://doi.org/10.1038/s41467-022-28362-0

    Article  CAS  Google Scholar 

  79. Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 16:321–332. https://doi.org/10.1038/nrg3920

    Article  CAS  Google Scholar 

  80. Varshney RK, Bohra A, Roorkiwal M, Barmukh R, Cowling WA, Chitikineni A et al (2021) Fast-forward breeding for a food-secure world. Trends Genet 37:1124–1136. https://doi.org/10.1016/j.tig.2021.08.002

    Article  CAS  Google Scholar 

  81. Sandhu K, Patil SS, Pumphrey M, Carter A (2021) Multitrait machine- and deep-learning models for genomic selection using spectral information in a wheat breeding program. Plant Genome 14:e20119. https://doi.org/10.1002/tpg2.20119

    Article  CAS  Google Scholar 

  82. Yang A, Zhang W, Wang J, Yang K, Han Y, Zhang L (2020) Review on the application of machine learning algorithms in the sequence data mining of DNA. Front Bioeng Biotechnol 8:1032. https://doi.org/10.3389/fbioe.2020.01032

    Article  Google Scholar 

  83. Vapnik VN (2000) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  84. Smith PF, Ganesh S, Liu P (2013) A comparison of random forest regression and multiple linear regression for prediction in neuroscience. J Neurosci Methods 220:85–91. https://doi.org/10.1016/j.jneumeth.2013.08.024

    Article  Google Scholar 

  85. van Dijk ADJ, Kootstra G, Kruijer W, de Ridder D (2021) Machine learning in plant science and plant breeding. iScience 24:101890. https://doi.org/10.1016/j.isci.2020.101890

    Article  Google Scholar 

  86. Yan J, Wang X (2022) Unsupervised and semi-supervised learning: the next frontier in machine learning for plant systems biology. Plant J 111:1527–1538. https://doi.org/10.1111/tpj.15905

    Article  CAS  Google Scholar 

  87. Gazestani VH, Lewis NE (2019) From genotype to phenotype: augmenting deep learning with networks and systems biology. Curr Opin Syst Biol 15:68–73. https://doi.org/10.1016/j.coisb.2019.04.001

    Article  Google Scholar 

  88. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  CAS  Google Scholar 

  89. Danilevicz MF, Gill M, Anderson R, Batley J, Bennamoun M, Bayer PE et al (2022) Plant genotype to phenotype prediction using machine learning. Front Genet 13:822173. https://doi.org/10.3389/fgene.2022.822173

    Article  Google Scholar 

  90. Wegrzyn JL, Liechty JD, Stevens KA, Wu LS, Loopstra CA, Vasquez-Gross HA et al (2014) Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics 196:891–909. https://doi.org/10.1534/genetics.113.159996

    Article  CAS  Google Scholar 

  91. Liu Y, Wang D, He F, Wang J, Joshi T, Xu D (2019) Phenotype prediction and genome-wide association study using deep convolutional neural network of soybean. Front Genet 10:1091. https://doi.org/10.3389/fgene.2019.01091

    Article  CAS  Google Scholar 

  92. Korani W, Clevenger JP, Chu Y, Ozias-Akins P (2019) Machine learning as an effective method for identifying true single nucleotide polymorphisms in polyploid plants. Plant Genome 12:180023. https://doi.org/10.3835/plantgenome2018.05.0023

    Article  CAS  Google Scholar 

  93. Shakoor N, Lee S, Mockler TC (2017) High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr Opin Plant Biol 38:184–192. https://doi.org/10.1016/j.pbi.2017.05.006

    Article  Google Scholar 

  94. Araus JL, Kefauver SC, Vergara-Díaz O, Vergara-Díaz O, Gracia-Romero A, Rezzouk FZ et al (2022) Crop phenotyping in a context of global change: what to measure and how to do it. J Integr Plant Biol 64:592–618. https://doi.org/10.1111/jipb.13191

    Article  Google Scholar 

  95. Hall RD, D’Auria JC, Silva Ferreira AC, Gibon Y, Kruszka D, Mishra P et al (2022) High-throughput plant phenotyping: a role for metabolomics? Trends Plant Sci 27:549–563. https://doi.org/10.1016/j.tplants.2022.02.001

    Article  CAS  Google Scholar 

  96. Duddu HSN, Johnson EN, Willenborg CJ, Shirtliffe SJ (2019) High-throughput UAV image-based method is more precise than manual rating of herbicide tolerance. Plant Phenom 2019:6036453. https://doi.org/10.34133/2019/6036453

    Article  CAS  Google Scholar 

  97. Kismiantini, Montesinos-López OA, Crossa J, Setiawan EP, Wutsqa DU (2021) Prediction of count phenotypes using high-resolution images and genomic data. G3 11:jkab035. https://doi.org/10.1093/g3journal/jkab035

    Article  CAS  Google Scholar 

  98. Rutkoski J, Poland J, Mondal S, Autrique E, Pérez LG, Crossa J et al (2016) Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3(6):2799–2808. https://doi.org/10.1534/g3.116.032888

    Article  Google Scholar 

  99. Danilevicz MF, Bayer PE, Boussaid F, Bennamoun M, Edwards D (2021) Maize yield prediction at an early developmental stage using multispectral images and genotype data for preliminary hybrid selection. Remote Sens 13:3976. https://doi.org/10.3390/rs13193976

    Article  Google Scholar 

Download references

Acknowledgments

W.J.W.T would like to acknowledge the support of the Grains Research and Development Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Batley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thomas, W.J.W. et al. (2023). Innovative Advances in Plant Genotyping. In: Shavrukov, Y. (eds) Plant Genotyping. Methods in Molecular Biology, vol 2638. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3024-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3024-2_32

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3023-5

  • Online ISBN: 978-1-0716-3024-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics