Skip to main content

Multiplexed ISSR Genotyping by Sequencing (MIG-Seq)

  • Protocol
  • First Online:
Plant Genotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2638))

  • 1090 Accesses

Abstract

Multiplexed inter-simple sequence repeat (ISSR) genotyping by sequencing (MIG-seq) is a simple, rapid, and inexpensive method for detecting single-nucleotide polymorphisms (SNPs) using next-generation sequencing (NGS). The advantages of MIG-seq include easy application to various species without prior genetic information. In addition, this method opens the door to genome-wide nucleotide sequence analyses of low-quality and trace-level deoxyribonucleic acid (DNA) samples, which have previously been difficult to analyze. Another advantage is that the procedure is simple, time-saving, and inexpensive. Recently, MIG-seq has been applied to wild and cultivated plants and has produced novel results. Using invisible DNA information, questions related to gene flow through pollination and seed dispersal, the genetic structure and diversity of populations, clonality, and the hybridization of wild and cultivated plants are being rapidly answered. In this chapter, I present the results of plant research based on MIG-seq and describe the procedure for this method as a user of MIG-seq.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai W, Zeng Y, Zhang D (2007) Mating patterns and pollen dispersal in a heterodichogamous tree, Juglans mandshurica (Juglandaceae). New Phytol 176:699–707. https://doi.org/10.1111/j.1469-8137.2007.02202.x

    Article  Google Scholar 

  2. Isagi Y, Saito D, Kawaguchi H, Tateno R, Watanabe S (2007) Effective pollen dispersal is enhanced by the genetic structure of an Aesculus turbinata population. J Ecol 95:983–999. https://doi.org/10.1111/j.1365-2745.2007.01272.x

    Article  Google Scholar 

  3. Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935. https://doi.org/10.1046/j.1365-294X.2004.02076.x

    Article  CAS  Google Scholar 

  4. Nagamitsu T, Ichikawa S, Ozawa M, Shimamura R, Kachi N, Tsumura Y et al (2002) Microsatellite analysis of the breeding system and seed dispersal in Shorea leprosula (Dipterocarpaceae). Int J Plant Sci 162:155–159. https://doi.org/10.1086/317902

    Article  Google Scholar 

  5. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241. https://doi.org/10.1111/j.1461-0248.2004.00684.x

    Article  Google Scholar 

  6. Olson-Manning CF, Wagner MR, Mitchell-Olds T (2012) Adaptive evolution: evaluating empirical support for theoretical predictions. Nat Rev Genet 13:867–877. https://doi.org/10.1038/nrg3322

    Article  CAS  Google Scholar 

  7. Jordan R, Breed MF, Prober SM, Miller AD, Hoffmann AA (2019) How well do revegetation plantings capture genetic diversity? Biol Lett 15:20190460. https://doi.org/10.1098/rsbl.2019.0460

    Article  Google Scholar 

  8. Franks SJ, Hoffmann AA (2012) Genetics of climate change adaptation. Annu Rev Genet 46:185–208. https://doi.org/10.1146/annurev-genet-110711-155511

    Article  CAS  Google Scholar 

  9. Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science 292:673–679. https://doi.org/10.1126/science.292.5517.673

    Article  CAS  Google Scholar 

  10. Kaltz O, Shykoff JA (1998) Local adaptation in host-parasite systems. Heredity 81:361–370. https://doi.org/10.1046/j.1365-2540.1998.00435.x

    Article  Google Scholar 

  11. Wagatsuma S, Imanishi J, Suyama Y, Matsuo A, Sato MP, Mitsuyuk C et al (2021) Revegetation in Japan overlooks geographical genetic structure of native Artemisia indica var. maximowiczii populations. Restor Ecol 30:e13567. https://doi.org/10.1111/rec.13567

    Article  Google Scholar 

  12. Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242. https://doi.org/10.1146/annurev.es.24.110193.001245

    Article  Google Scholar 

  13. Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273. https://doi.org/10.1038/sj.hdy.6800725

    Article  CAS  Google Scholar 

  14. Weeks AR, Sgro CM, Young AG, Frankham R, Mitchell NJ, Miller KM et al (2011) Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evol Appl 4:709–725. https://doi.org/10.1111/j.1752-4571.2011.00192.x

    Article  Google Scholar 

  15. Jump AS, Marchant R, Peñuelas J (2009) Environmental change and the option value of genetic diversity. Trends Plant Sci 14:51–58. https://doi.org/10.1016/j.tplants.2008.10.002

    Article  CAS  Google Scholar 

  16. Ordonez N, Seidl MF, Waalwijk C, Drenth A, Kilian A, Thomma BPHJ et al (2015) Worse comes to worst: Bananas and Panama disease—when plant and pathogen clones meet. PLoS Pathog 11:e1005197. https://doi.org/10.1371/journal.ppat.1005197

    Article  CAS  Google Scholar 

  17. Ploetz RC (1994) Panama disease: return of the first banana menace. Int J Pest Manag 40:326–336. https://doi.org/10.1080/09670879409371908

    Article  Google Scholar 

  18. Monteiro WP, Dalapicolla J, Carvalho CS, Veiga JC, Vasconcelos S, Ramos SJ (2022) Genetic diversity and structure of an endangered medicinal plant species (Pilocarpus microphyllus) in eastern Amazon: implications for conservation. Conserv Genet 23:745–758. https://doi.org/10.1007/s10592-022-01454-6

    Article  CAS  Google Scholar 

  19. Moriya YD, Nanami S, Sumikura J, Yamakura T, Itoh A (2017) Clonal structure, growth pattern and preemptive space occupancy through sprouting of an invasive tree, Triadica sebifera. J For Res 22:8–14. https://doi.org/10.1080/13416979.2016.1265757

    Article  CAS  Google Scholar 

  20. Suyama Y, Obayashi K, Hayashi I (2000) Clonal structure in a dwarf bamboo (Sasa senanensis) population inferred from amplified fragment length polymorphism (AFLP) fingerprints. Mol Ecol 9:901–906. https://doi.org/10.1046/j.1365-294x.2000.00943.x

    Article  CAS  Google Scholar 

  21. Bricker E, Calladine A, Virnstein R, Waycott M (2018) Mega clonality in an aquatic plant – a potential survival strategy in a changing environment. Front Plant Sci 9:435. https://doi.org/10.3389/fpls.2018.00435

    Article  Google Scholar 

  22. Edgeloe JM, Severn-Ellis AA, Bayer PE, Mehravi S, Breed MF, Krauss SL et al (2022) Extensive polyploid clonality was a successful strategy for seagrass to expand into a newly submerged environment. Proc R Soc Lond B Biol Sci 289:20220538. https://doi.org/10.1098/rspb.2022.0538

    Article  Google Scholar 

  23. Nakamura M, Nanami S, Okuno S, Hirota SK, Matsuo A, Suyama Y et al (2021) Genetic diversity and structure of apomictic and sexually reproducing Lindera species (Lauraceae) in Japan. Forests 27:227. https://doi.org/10.3390/f12020227

    Article  Google Scholar 

  24. Pfeiffer T, Klahr A, Peterson A, Levichev IG, Schnittler M (2012) No sex at all? Extremely low genetic diversity in Gagea spathacea (Liliaceae) across Europe. Flora 207:372–378. https://doi.org/10.1016/j.flora.2012.03.002

    Article  Google Scholar 

  25. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K et al (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:48–155. https://doi.org/10.1016/j.tree.2006.11.004

    Article  Google Scholar 

  26. Henderson SA, Billotte N, Pintaud JC (2006) Genetic isolation of Cape Verde Island Phoenix atlantica (Arecaceae) revealed by microsatellite markers. Conserv Genet 7:213–223. https://doi.org/10.1007/s10592-006-9128-7

    Article  CAS  Google Scholar 

  27. Mayr E (1942) Systematics and the origin of species from the viewpoint of a zoologist. Columbia University Press, New York

    Google Scholar 

  28. Norman C, Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563. https://doi.org/10.1146/annurev.ecolsys.30.1.539

    Article  Google Scholar 

  29. Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 5:229–237. https://doi.org/10.1016/j.tree.2005.02.010

    Article  Google Scholar 

  30. Martinsen GD, Whitham TG, Turek RJ, Keim P (2001) Hybrid populations selectively filter gene introgression between species. Evolution 55:1325–1335. https://doi.org/10.1111/j.0014-3820.2001.tb00655.x

    Article  CAS  Google Scholar 

  31. Rieseberg LH (1995) The role of hybridization in evolution: old wine in new skins. Am J Bot 82:944–953. https://doi.org/10.1002/j.1537-2197.1995.tb15711.x

    Article  Google Scholar 

  32. Chapman MA, Burke JM (2007) Genetic divergence and hybrid speciation. Evolution 61:1773–1780. https://doi.org/10.1111/j.1558-5646.2007.00134.x

    Article  Google Scholar 

  33. Rieseberg LH (1997) Hybrid origins of plant species. Annu Rev Ecol Syst 28:359–389. https://doi.org/10.1146/annurev.ecolsys.28.1.359

    Article  Google Scholar 

  34. Wolf DE, Takebayashi N, Rieseberg LH (2001) Predicting the risk of extinction through hybridization. Conserv Biol 15:1039–1053. https://doi.org/10.1046/j.1523-1739.2001.0150041039.x

    Article  Google Scholar 

  35. Suyama Y, Matsuki Y (2015) MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Sci Rep 5:16963. https://doi.org/10.1038/srep16963

    Article  CAS  Google Scholar 

  36. Suyama Y, Hirota SK, Matsuo A, Tsunamoto Y, Mitsuyuki C, Shimura A et al (2022) Complementary combination of multiplex high-throughput DNA sequencing for molecular phylogeny. Ecol Res 37:171–181. https://doi.org/10.1111/1440-1703.12270

    Article  CAS  Google Scholar 

  37. Mokodongan DF, Taninaka H, Sara L, Kikuchi T, Yuasa H, Suyama Y et al (2021) Spatial autocorrelation analysis using MIG-seq data indirectly estimated the gamete and larval dispersal range of the blue coral, Heliopora coerulea, within reefs. Front Mar Sci 8:702977. https://doi.org/10.3389/fmars.2021.702977

    Article  Google Scholar 

  38. Yamato M, Yamada H, Maeda T, Yamamoto K, Kusakabe R, Orihara T (2022) Clonal spore populations in sporocarps of arbuscular mycorrhizal fungi. Mycorrhiza 32:373–385. https://doi.org/10.1007/s00572-022-01086-1

    Article  CAS  Google Scholar 

  39. Nanami S, Ikeda S, Tani N, Tan S, Diway B, Harada K et al (2007) Development of microsatellite markers for Dryobalanops aromatica (Dipterocarpaceae), a tropical emergent tree in Southeast Asia. Mol Ecol Notes 7:623–625. https://doi.org/10.1111/j.1471-8286.2006.01653.x

    Article  CAS  Google Scholar 

  40. Eguchi K, Oguri E, Sasaki T, Matsuo A, Nguyen DD, Jaitrong W et al (2020) Revisiting museum collections in the genomic era: potential of MIG-seq for retrieving phylogenetic information from aged minute dry specimens of ants (Hymenoptera: Formicidae) and other small organisms. Myrmecol News 30:151–159. https://doi.org/10.25849/myrmecol.news_030:151

    Article  Google Scholar 

  41. Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140. https://doi.org/10.1111/mec.12354

    Article  Google Scholar 

  42. Hirota SK, Yahara T, Fuse K, Sato H, Tagane S, Fujii S et al (2021) Molecular phylogeny and taxonomy of the Hydrangea serrata complex (Hydrangeaceae) in western Japan, including a new subspecies of H. acuminata from Yakushima. PhytoKeys 188:49–71. https://doi.org/10.3897/phytokeys.188.64259

    Article  Google Scholar 

  43. Nakahama N, Asai T, Matsumoto S, Suetsugu K, Kurashima O, Matsuo A et al (2021) Detection and dispersal risk of genetically disturbed individuals in endangered wetland plant species Pecteilis radiata (Orchidaceae) in Japan. Biodivers Conserv 30:1913–1927. https://doi.org/10.1007/s10531-021-02174-y

    Article  Google Scholar 

  44. Nota K, Klaminder J, Milesi P, Bindler R, Nobile A, van Steijn T et al (2022) Norway spruce postglacial recolonization of Fennoscandia. Nat Commun 13:1333. https://doi.org/10.1038/s41467-022-28976-4

    Article  CAS  Google Scholar 

  45. Okabe N, Yahara T, Tagane S, Mitsuyuki C, Matsuo A, Sasaki T et al (2021) A new species of Actinodaphne (Lauraceae), A. lambirensis from Sarawak, Malaysia, and an analysis of its phylogenetic position using MIG-seq and ITS sequences. Acta Phytotaxon Geobot 72:43–59. https://doi.org/10.18942/apg.202005

    Article  Google Scholar 

  46. Prasetyo E, Widiyatno IS, Na’iem M, Matsui T, Matsuo A et al (2020) Genetic diversity and the origin of commercial plantation of Indonesian teak on Java Island. Tree Genet Genomes 16:34. https://doi.org/10.1007/s11295-020-1427-5

    Article  Google Scholar 

  47. Sakaguchi S, Nagasawa K, Umetsu Y, Nagasawa J, Ichikawa S, Kinoshita S et al (2020) Phylogenetic origin of Magnolia pseudokobus (Magnoliaceae), a rare Magnolia extinct in the wild, revealed by chloroplast genome sequencing, genome-wide SNP genotyping and microsatellite analysis. J For Res 25:322–328. https://doi.org/10.1080/13416979.2020.1767268

    Article  CAS  Google Scholar 

  48. Suetsugu K, Hirota SK, Suyama Y (2021) A new natural hybrid, Goodyera ×tanakae (Orchidaceae) from Japan with a discussion on the taxonomic identities of G. foliosa, G. sonoharae, G. velutina, G. ×maximo-velutina and G. henryi, based on morphological and molecular data. Taiwania 66:277–286. https://doi.org/10.6165/tai.2021.66.277

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Nanami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nanami, S. (2023). Multiplexed ISSR Genotyping by Sequencing (MIG-Seq). In: Shavrukov, Y. (eds) Plant Genotyping. Methods in Molecular Biology, vol 2638. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3024-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3024-2_29

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3023-5

  • Online ISBN: 978-1-0716-3024-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics