Skip to main content

Penta-Primer Amplification Refractory Mutation System (PARMS) with Direct PCR-Based SNP Marker-Assisted Selection (D-MAS)

  • Protocol
  • First Online:
Plant Genotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2638))

Abstract

The penta-primer amplification refractory mutation system (PARMS) is a high-throughput, low-cost, and automated genotyping assay system that utilizes competitive allele-specific polymerase chain reaction (AS-PCR) combined with a homogeneous fluorescence-based reporting system to detect genetic variation occurring at single-nucleotide polymorphism (SNP). It is flexible in terms of the number of SNPs and samples to be analyzed, and the whole process only needs standard liquid handling, thermal cycling instruments, and plate reading instruments, which are present in many labs. Its compatibility with DNA samples prepared from a variety of sources and extraction technologies, such as alkaline lysis, makes it suitable for a direct PCR-based SNP marker-assisted selection system (D-MAS), a simple, cost- and labor-saving, and robust SNP genotyping system. It combines rapid and high-throughput DNA extraction through modified alkaline lysis with PARMS to dramatically reduce the time of manual operation and result analysis in the molecular breeding of major crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vignal A, Milan D, SanCristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275–305. https://doi.org/10.1186/1297-9686-34-3-275

    Article  CAS  Google Scholar 

  2. Perkel J (2008) SNP genotyping: six technologies that keyed a revolution. Nat Methods 5:447–453. https://doi.org/10.1038/nmeth0508-447

    Article  CAS  Google Scholar 

  3. Jenkins S, Gibson N (2002) High-throughput SNP genotyping. Comp Funct Genomics 3:57–66. https://doi.org/10.1002/cfg.130

    Article  CAS  Google Scholar 

  4. Kim S, Misra A (2007) SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng 9:289–320. https://doi.org/10.1146/annurev.bioeng.9.060906.152037

    Article  CAS  Google Scholar 

  5. Nijman IJ, Kuipers S, Verheul M, Guryev V, Cuppen E (2008) A genome-wide SNP panel for mapping and association studies in the rat. BMC Genomics 9:95. https://doi.org/10.1186/1471-2164-9-95

    Article  CAS  Google Scholar 

  6. Delannay X, McLaren G, Ribaut JM (2012) Fostering molecular breeding in developing countries. Mol Breed 29:857–873. https://doi.org/10.1007/s11032-011-9611-9

    Article  CAS  Google Scholar 

  7. Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotech 2:195–212. https://doi.org/10.9787/PBB.2014.2.3.195

    Article  Google Scholar 

  8. Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N et al (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 17:2503–2516. https://doi.org/10.1093/nar/17.7.2503

    Article  CAS  Google Scholar 

  9. Heim M, Meyer UA (1990) Genotyping of poor metabolisers of debrisoquine by allele-specific PCR amplification. Lancet 336(8714):529–532. https://doi.org/10.1016/0140-6736(90)92086-w

    Article  CAS  Google Scholar 

  10. Zhang B, Zhao N, Liu YY, Jia L, Fu Y, He XX et al (2019) Novel molecular markers for high-throughput sex characterization of Cynoglossus semilaevis. Aquaculture 513:734331. https://doi.org/10.1016/j.aquaculture.2019.734331

    Article  CAS  Google Scholar 

  11. Wang XD, Zheng M, Liu HF, Zhang L, Chen F, Zhang W et al (2020) Fine-mapping and transcriptome analysis of a candidate gene controlling plant height in Brassica napus L. Biotechnol Biofuels 13:42. https://doi.org/10.1186/s13068-020-01687-y

    Article  CAS  Google Scholar 

  12. Xu Q, Xu FC, Qin DD, Li MF, Fedak G, Cao WG et al (2020) Molecular mapping of QTLs conferring Fusarium head blight resistance in Chinese wheat cultivar Jingzhou 66. Plan Theory 9:1021. https://doi.org/10.3390/plants9081021

    Article  CAS  Google Scholar 

  13. Huang J, Gao LJ, Luo SM, Liu KQ, Qin DJ, Pan YH et al (2022) The genetic editing of GS3 via CRISPR/Cas9 accelerates the breeding of three-line hybrid rice with superior yield and grain quality. Mol Breed 42:22. https://doi.org/10.1007/s11032-022-01290-z

    Article  CAS  Google Scholar 

  14. Gao J, Liang HF, Huang J, Qing DJ, Wu H, Zhou WY et al (2021) Development of the PARMS marker of the TAC1 gene and its utilization in rice plant architecture breeding. Euphytica 217:49. https://doi.org/10.1007/s10681-020-02747-y

    Article  CAS  Google Scholar 

  15. Chai L, Feng B, Liu X, Jiang LC, Yuan S, Zhang ZW et al (2021) Fine mapping of a locus underlying the ectopic blade-like outgrowths on leaf and screening its candidate genes in rapeseed (Brassica napus L.). Front Plant Sci 11:616844. https://doi.org/10.3389/fpls.2020.616844

    Article  Google Scholar 

  16. Li Z, Yuan R, Wang M, Hong MY, Zhu L, Li XF et al (2022) Development of the PARMS marker of the dominant genic male sterility (DGMS) line and its utilization in rapeseed (Brassica napus L.) breeding. Plan Theory 11:421. https://doi.org/10.3390/plants11030421

    Article  CAS  Google Scholar 

  17. Rasheed A, Wen WE, Gao FM, Zhai SN, Jin H, Liu JD et al (2016) Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet 129:1843–1860. https://doi.org/10.1007/s00122-016-2743-x

    Article  CAS  Google Scholar 

  18. Ma CY, Ma XN, Yao LS, Liu YJ, Du FL, Yang XH et al (2017) qRfg3, a novel quantitative resistance locus against Gibberella stalk rot in maize. Theor Appl Genet 130:1723–1734. https://doi.org/10.1007/s00122-017-2921-5

    Article  CAS  Google Scholar 

  19. Pan QC, Xu YC, Li K, Peng Y, Zhan W, Li WQ et al (2017) The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiol 175:858–873. https://doi.org/10.1104/pp.17.00709

    Article  CAS  Google Scholar 

  20. Yang GL, Chen SP, Chen LK, Sun K, Huang CH, Zhou DH et al (2019) Development of a core SNP arrays based on the KASP method for molecular breeding of rice. Rice 12:21. https://doi.org/10.1186/s12284-019-0272-3

    Article  Google Scholar 

  21. Zhao JJ, Wang ZW, Liu HX, Zhao J, Li T, Hou J et al (2019) Global status of 47 major wheat loci controlling yield, quality, adaptation and stress resistance selected over the last century. BMC Plant Biol 19:5. https://doi.org/10.1186/s12870-018-1612-y

    Article  Google Scholar 

  22. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4325. https://doi.org/10.1093/nar/8.19.4321

    Article  CAS  Google Scholar 

  23. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21. https://doi.org/10.1007/BF02712670

    Article  CAS  Google Scholar 

  24. Lu J, Hou J, Ouyang YD, Luo H, Zhao JH, Mao C et al (2020) A direct PCR-based SNP marker-assisted selection system (D-MAS) for different crops. Mol Breed 40:9. https://doi.org/10.1007/s11032-019-1091-3

    Article  CAS  Google Scholar 

  25. Zhang JC, Zhang DJ, Fan YW, Li CC, Xu PK, Li W et al (2021) The identification of grain size genes by RapMap reveals directional selection during rice domestication. Nat Commun 12:5673. https://doi.org/10.1038/s41467-021-25961-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tan, C., Yang, Y. (2023). Penta-Primer Amplification Refractory Mutation System (PARMS) with Direct PCR-Based SNP Marker-Assisted Selection (D-MAS). In: Shavrukov, Y. (eds) Plant Genotyping. Methods in Molecular Biology, vol 2638. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3024-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3024-2_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3023-5

  • Online ISBN: 978-1-0716-3024-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics