Skip to main content

FlowCam 8400 and FlowCam Cyano Phytoplankton Classification and Viability Staining by Imaging Flow Cytometry

  • Protocol
  • First Online:
Spectral and Imaging Cytometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2635))

Abstract

This chapter provides a protocol for a detailed evaluation of phytoplankton and nuisance cyanobacteria with the FlowCam 8400 and the FlowCam Cyano. The chapter includes (i) detailed description of the quality control of fluorescent mode of the FlowCam, (ii) detailing methods for discriminating nuisance cyanobacteria using the FlowCam Cyano, how to set up libraries and classification routines for commonly used classification reports, and (iii) detailing methods for viability staining to quantify LIVE versus DEAD phytoplankton using the FlowCam 8400.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kiyoshi M, Shibata H, Harazono A et al (2019) Collaborative study for analysis of subvisible particles using flow imaging and light obscuration: experiences in japanese biopharmaceutical consortium. J Pharm Sci 108:832–841. https://doi.org/10.1016/j.xphs.2018.08.006

    Article  CAS  PubMed  Google Scholar 

  2. Krafft BA, Bakkeplass KG, Berge T et al. (2019) Report from a krill focused survey with RV Kronprins Haakon and land-based predator work in Antarctica during 2018/2019. Havforskningsinstituttet 2019. 103 p. Rapport fra havforskningen (2019-21). https://hdl.handle.net/10037/20019

  3. Park J, Kim Y, Kim M, Lee WH (2018) A novel method for cell counting of Microcystis colonies in water resources using a digital imaging flow cytometer and microscope. Environ Eng Res 24:397–403. https://doi.org/10.4491/eer.2018.266

    Article  Google Scholar 

  4. Blaschko MB, Holness G, Mattar MA et al (2005) Automatic in situ identification of plankton. In: Proceedings of the seventh IEEE Workshops on Application of Computer Vision (WACV/MOTION’05) – volume 1. IEEE Computer Society, USA, pp 79–86

    Google Scholar 

  5. Cetinić I, Poulton N, Slade WH (2016) Characterizing the phytoplankton soup: pump and plumbing effects on the particle assemblage in underway optical seawater systems. Opt Express 24:20703–20715. https://doi.org/10.1364/OE.24.020703

    Article  PubMed  Google Scholar 

  6. Buskey EJ, Hyatt CJ (2006) Use of the FlowCAM for semi-automated recognition and enumeration of red tide cells (Karenia brevis) in natural plankton samples. Harmful Algae 5:685–692. https://doi.org/10.1016/j.hal.2006.02.003

    Article  Google Scholar 

  7. Álvarez E, López-Urrutia Á, Nogueira E, Fraga S (2011) How to effectively sample the plankton size spectrum? A case study using FlowCAM. J Plankton Res 33:1119–1133. https://doi.org/10.1093/plankt/fbr012

    Article  Google Scholar 

  8. Álvarez E, Moyano M, López-Urrutia Á, Nogueira E, Scharek R (2014) Routine determination of plankton community composition and size structure: a comparison between FlowCAM and light microscopy. J Plankton Res 36:170–184. https://doi.org/10.1093/plankt/fbt069

    Article  Google Scholar 

  9. Detmer TM, Broadway KJ, Potter CG, Collins SF, Parkos JJ, Wahl DH (2019) Comparison of microscopy to a semi-automated method (FlowCAM®) for characterization of individual-, population-, and community-level measurements of zooplankton. Hydrobiologia 838:99–110. https://doi.org/10.1007/s10750-019-03980-w

    Article  Google Scholar 

  10. Graham MD, Cook J, Graydon J, Kinniburgh D, Nelson H, Pilieci S, Vinebrooke RD (2018) High-resolution imaging particle analysis of freshwater cyanobacterial blooms. Limnol Oceanogr Methods 16:669–679. https://doi.org/10.1002/lom3.10274

    Article  Google Scholar 

  11. Hrycik AR, Shambaugh A, Stockwell JD (2019) Comparison of FlowCAM and microscope biovolume measurements for a diverse freshwater phytoplankton community. J Plankton Res 41:849–864. https://doi.org/10.1093/plankt/fbz056

    Article  CAS  Google Scholar 

  12. Lehman PW, Kurobe T, Lesmeister S, Baxa D, Tung A, Teh SJ (2017) Impacts of the 2014 severe drought on the Microcystis bloom in San Francisco Estuary. Harmful Algae 63:94–108. https://doi.org/10.1016/j.hal.2017.01.011

    Article  CAS  PubMed  Google Scholar 

  13. Singh R, Waxman L (2020) A streamlined bioanalytical approach to select a compatible primary container system early in drug development: a toolbox for the biopharmaceutical industry. J Pharm Sci 109:206–210. https://doi.org/10.1016/j.xphs.2019.09.016

    Article  CAS  PubMed  Google Scholar 

  14. Vargas SK, Eskafi A, Carter E, Ciaccio N (2020) A comparison of background membrane imaging versus flow technologies for subvisible particle analysis of biologics. Int J Pharm 578:119072. https://doi.org/10.1016/j.ijpharm.2020.119072

    Article  CAS  PubMed  Google Scholar 

  15. Spaulding BW (2009) Early detection can help eradicate invasive mussels. J AWWA 101:19–20. https://doi.org/10.1002/j.1551-8833.2009.tb09977.x

    Article  CAS  Google Scholar 

  16. Yokogawa Fluid Imaging Technologies, Inc (2013) System and method for monitoring birefringent particles in a fluid. US Patent 8,345,239, 01 B1 January 2013

    Google Scholar 

  17. Yokogawa Fluid Imaging Technologies, Inc (2015) System and method for monitoring birefringent particles in a fluid. US Patent 9,151,943 B2, 06 October 2015

    Google Scholar 

  18. Sieracki C (2018) Extending the limits: oil immersion flow microscopy. http://www.labcompare.com/10-Featured-Articles/349589-Extending-the-Limits-Oil-Immersion-Flow-Microscopy/. Accessed 22 Jun 2020

  19. Yokogawa Fluid Imaging Technologies, Inc (2018) Oil-immersion enhanced imaging flow cytometer. US Patent 2009/0273774 A1 Nov 5 2009

    Google Scholar 

  20. Graham G, Camp R (2017) Instrumentation advance speeds plankton study. Sea Technol 58:30–32

    Google Scholar 

  21. Detmer TM, Broadway KJ, Potter CG et al (2019) Comparison of microscopy to a semi-automated method (FlowCAM®) for characterization of individual-, population-, and community-level measurements of zooplankton. Hydrobiologia 838:99–110. https://doi.org/10.1007/s10750-019-03980-w

    Article  Google Scholar 

  22. Yokogawa Fluid Imaging Technologies, Inc System and method for light obscuration enhanced imaging flow cytometry. US Patent 10,761,007 May 31, 2018

    Google Scholar 

  23. Yokogawa Fluid Imaging Technologies, Inc (2018) System and method for monitoring particles in a fluid using ratiometric cytometry. US Patent 9,983,115, Sept 21, 2015

    Google Scholar 

  24. Adams H, Buerkens F, Cottrell A, Reeder S, Southard M (2018) Use an integrated approach to monitor algal blooms. Opflow 44:20–21. https://doi.org/10.1002/opfl.1113

    Article  Google Scholar 

  25. Lehman PW, Kurobe T, Teh SJ (2020) Impact of extreme wet and dry years on the persistence of Microcystis harmful algal blooms in San Francisco Estuary. Quat Int 521:16–25. https://doi.org/10.1016/j.quaint.2019.12.003

    Article  Google Scholar 

  26. Dashkova V, Malashenkov D, Poulton N, Vorobjev I, Barteneva NS (2017) Imaging flow cytometry for phytoplankton analysis. Methods 112:188–200. https://doi.org/10.1016/j.ymeth.2016.05.007

    Article  CAS  PubMed  Google Scholar 

  27. Menden-Deuer S, Morison F, Montalbano AL et al (2020) Multi-instrument assessment of phytoplankton abundance and cell sizes in mono-specific laboratory cultures and whole plankton community composition in the North Atlantic. Front Mar Sci 7. https://doi.org/10.3389/fmars.2020.00254

  28. Poulton NJ (2016) FlowCam: quantification and classification of phytoplankton by imaging flow cytometry. In: Barteneva NS, Vorobjev IA (eds) Imaging flow cytometry: methods and protocols. Springer, New York, pp 237–247

    Chapter  Google Scholar 

  29. Gancel HN, Carmichael RH, Park K, Krause JW, Rikard S (2019) Field mark-recapture of calcein-stained larval oysters (Crassostrea virginica) in a freshwater-dominated estuary. Estuar Coasts 42:1558–1569. https://doi.org/10.1007/s12237-019-00582-6

    Article  CAS  Google Scholar 

  30. Natunen K, Seppälä J, Schwenk D et al (2015) Nile Red staining of phytoplankton neutral lipids: species-specific fluorescence kinetics in various solvents. J Appl Phycol 27:1161–1168. https://doi.org/10.1007/s10811-014-0404-5

    Article  CAS  PubMed  Google Scholar 

  31. Shuman TR, Mason G, Reeve D et al (2016) Low-energy input continuous flow rapid pre-concentration of microalgae through electro-coagulation–flocculation. Chem Eng J 297:97–105. https://doi.org/10.1016/j.cej.2016.03.128

    Article  CAS  Google Scholar 

  32. Fontvieille DA, Outaguerouine A, Thevenot DR (1992) Fluorescein diacetate hydrolysis as a measure of microbial activity in aquatic systems: application to activated sludges. Environ Technol 13:531–540. https://doi.org/10.1080/09593339209385181

    Article  CAS  Google Scholar 

  33. Prado R, García R, Rioboo C, Herrero C, Abalde J, Cid A (2009) Comparison of the sensitivity of different toxicity test endpoints in a microalga exposed to the herbicide paraquat. Environ Int 35:240–247. https://doi.org/10.1016/j.envint.2008.06.012

    Article  CAS  PubMed  Google Scholar 

  34. Reavie ED, Cangelosi AA, Allinger LE (2010) Assessing ballast water treatments: evaluation of viability methods for ambient freshwater microplankton assemblages. J Gt Lakes Res 36:540–547. https://doi.org/10.1016/j.jglr.2010.05.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by Yokogawa Fluid Imaging Technologies. The authors would like to thank Frances Buerkens, Savannah Judge, Sarah Isakson, and Harry Nelson from Yokogawa Fluid Imaging Technologies for providing careful review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn H. Roache-Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Roache-Johnson, K.H., Stephens, N.R. (2023). FlowCam 8400 and FlowCam Cyano Phytoplankton Classification and Viability Staining by Imaging Flow Cytometry. In: Barteneva, N.S., Vorobjev, I.A. (eds) Spectral and Imaging Cytometry. Methods in Molecular Biology, vol 2635. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3020-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3020-4_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3019-8

  • Online ISBN: 978-1-0716-3020-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics