Skip to main content

Targeted Integration of Transgenes at the Mouse Gt(ROSA)26Sor Locus

  • Protocol
  • First Online:
Transgenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2631))

  • 1445 Accesses

Abstract

The targeting of transgenic constructs at single copy into neutral genomic loci avoids the unpredictable outcomes associated with conventional random integration approaches. The Gt(ROSA)26Sor locus on chromosome 6 has been used many times for the integration of transgenic constructs and is known to be permissive for transgene expression and disruption of the gene is not associated with a known phenotype. Furthermore, the transcript made from the Gt(ROSA)26Sor locus is ubiquitously expressed and subsequently the locus can be used to drive the ubiquitous expression of transgenes.

Here we report a protocol for the generation of targeted transgenic alleles at Gt(ROSA)26Sor, taking as an example a conditional overexpression allele, by PhiC31 integrase/recombinase-mediated cassette exchange of an engineered Gt(ROSA)26Sor locus in mouse embryonic stem cells. The overexpression allele is initially silenced by the presence of a loxP flanked stop sequence but can be strongly activated through the action of Cre recombinase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang H, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918. https://doi.org/10.1016/j.cell.2013.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bradley A, Anastassiadis K, Ayadi A et al (2012) The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm Genome 23(9–10):580–586. https://doi.org/10.1007/s00335-012-9422-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barbaric I, Miller G, Dear TN (2007) Appearances can be deceiving: phenotypes of knockout mice. Brief Funct Genomic Proteomic 6(2):91–103. https://doi.org/10.1093/bfgp/elm008

    Article  CAS  PubMed  Google Scholar 

  4. Knight JC (2014) Approaches for establishing the function of regulatory genetic variants involved in disease. Genome Med 6(10):92. https://doi.org/10.1186/s13073-014-0092-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Palmiter RD, Brinster RL (1986) Germ-line transformation of mice. Annu Rev Genet 20:465–499. https://doi.org/10.1146/annurev.ge.20.120186.002341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beier DR, Morton CC, Leder A et al (1989) Perinatal lethality (ple): a mutation caused by integration of a transgene into distal mouse chromosome 15. Genomics 4(4):498–504

    Article  CAS  PubMed  Google Scholar 

  7. Cain-Hom C, Splinter E, van Min M et al (2017) Efficient mapping of transgene integration sites and local structural changes in Cre transgenic mice using targeted locus amplification. Nucleic Acids Res 45(8):e62. https://doi.org/10.1093/nar/gkw1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goodwin LO, Splinter E, Davis TL et al (2019) Large-scale discovery of mouse transgenic integration sites reveals frequent structural variation and insertional mutagenesis. Genome Res 29(3):494–505. https://doi.org/10.1101/gr.233866.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cranston A, Dong C, Howcroft J et al (2001) Chromosomal sequences flanking an efficiently expressed transgene dramatically enhance its expression. Gene 269(1–2):217–225

    Article  CAS  PubMed  Google Scholar 

  10. Dobie KW, Lee M, Fantes JA et al (1996) Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus. Proc Natl Acad Sci U S A 93(13):6659–6664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garrick D, Fiering S, Martin DI et al (1998) Repeat-induced gene silencing in mammals. Nat Genet 18(1):56–59. https://doi.org/10.1038/ng0198-56

    Article  CAS  PubMed  Google Scholar 

  12. Bronson SK, Plaehn EG, Kluckman KD et al (1996) Single-copy transgenic mice with chosen-site integration. Proc Natl Acad Sci U S A 93(17):9067–9072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wallace H, Ansell R, Clark J et al (2000) Pre-selection of integration sites imparts repeatable transgene expression. Nucleic Acids Res 28(6):1455–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zambrowicz BP, Imamoto A, Fiering S et al (1997) Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci U S A 94(8):3789–3794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71. https://doi.org/10.1038/5007

    Article  CAS  PubMed  Google Scholar 

  16. Mao X, Fujiwara Y, Orkin SH (1999) Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc Natl Acad Sci U S A 96(9):5037–5042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Belteki G, Haigh J, Kabacs N et al (2005) Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Res 33(5):e51. https://doi.org/10.1093/nar/gni051

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yu HM, Liu B, Chiu SY et al (2005) Development of a unique system for spatiotemporal and lineage-specific gene expression in mice. Proc Natl Acad Sci U S A 102(24):8615–8620. https://doi.org/10.1073/pnas.0500124102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miyazaki S, Yamato E, Miyazaki J (2004) Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes 53(4):1030–1037

    Article  CAS  PubMed  Google Scholar 

  20. Haenebalcke L, Goossens S, Dierickx P et al (2013) The ROSA26-iPSC mouse: a conditional, inducible, and exchangeable resource for studying cellular (De)differentiation. Cell Rep 3(2):335–341. https://doi.org/10.1016/j.celrep.2013.01.016

    Article  CAS  PubMed  Google Scholar 

  21. Mao J, Barrow J, McMahon J et al (2005) An ES cell system for rapid, spatial and temporal analysis of gene function in vitro and in vivo. Nucleic Acids Res 33(18):e155. https://doi.org/10.1093/nar/gni146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vidigal JA, Morkel M, Wittler L et al (2010) An inducible RNA interference system for the functional dissection of mouse embryogenesis. Nucleic Acids Res 38(11):e122. https://doi.org/10.1093/nar/gkq199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen CM, Krohn J, Bhattacharya S et al (2011) A comparison of exogenous promoter activity at the ROSA26 locus using a PhiiC31 integrase mediated cassette exchange approach in mouse ES cells. PLoS One 6(8):e23376. https://doi.org/10.1371/journal.pone.0023376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tchorz JS, Suply T, Ksiazek I et al (2012) A modified RMCE-compatible Rosa26 locus for the expression of transgenes from exogenous promoters. PLoS One 7(1):e30011. https://doi.org/10.1371/journal.pone.0030011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seibler J, Kuter-Luks B, Kern H et al (2005) Single copy shRNA configuration for ubiquitous gene knockdown in mice. Nucleic Acids Res 33(7):e67. https://doi.org/10.1093/nar/gni065

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hitz C, Wurst W, Kuhn R (2007) Conditional brain-specific knockdown of MAPK using Cre/loxP regulated RNA interference. Nucleic Acids Res 35(12):e90. https://doi.org/10.1093/nar/gkm475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hohenstein P, Slight J, Ozdemir DD et al (2008) High-efficiency Rosa26 knock-in vector construction for Cre-regulated overexpression and RNAi. PathoGenetics 1(1):3. https://doi.org/10.1186/1755-8417-1-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nyabi O, Naessens M, Haigh K et al (2009) Efficient mouse transgenesis using Gateway-compatible ROSA26 locus targeting vectors and F1 hybrid ES cells. Nucleic Acids Res 37(7):e55. https://doi.org/10.1093/nar/gkp112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seibler J, Schubeler D, Fiering S et al (1998) DNA cassette exchange in ES cells mediated by Flp recombinase: an efficient strategy for repeated modification of tagged loci by marker-free constructs. Biochemistry 37(18):6229–6234. https://doi.org/10.1021/bi980288t

    Article  CAS  PubMed  Google Scholar 

  30. Turan S, Zehe C, Kuehle J et al (2013) Recombinase-mediated cassette exchange (RMCE) – a rapidly-expanding toolbox for targeted genomic modifications. Gene 515(1):1–27. https://doi.org/10.1016/j.gene.2012.11.016

    Article  CAS  PubMed  Google Scholar 

  31. Chen SX, Osipovich AB, Ustione A et al (2011) Quantification of factors influencing fluorescent protein expression using RMCE to generate an allelic series in the ROSA26 locus in mice. Dis Model Mech 4(4):537–547. https://doi.org/10.1242/dmm.006569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sandhu U, Cebula M, Behme S et al (2011) Strict control of transgene expression in a mouse model for sensitive biological applications based on RMCE compatible ES cells. Nucleic Acids Res 39(1):e1. https://doi.org/10.1093/nar/gkq868

    Article  CAS  PubMed  Google Scholar 

  33. Hermann M, Maeder ML, Rector K et al (2012) Evaluation of OPEN zinc finger nucleases for direct gene targeting of the ROSA26 locus in mouse embryos. PLoS One 7(9):e41796. https://doi.org/10.1371/journal.pone.0041796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Perez-Pinera P, Ousterout DG, Brown MT et al (2012) Gene targeting to the ROSA26 locus directed by engineered zinc finger nucleases. Nucleic Acids Res 40(8):3741–3752. https://doi.org/10.1093/nar/gkr1214

    Article  CAS  PubMed  Google Scholar 

  35. Kasparek P, Krausova M, Haneckova R et al (2014) Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS Lett 588(21):3982–3988. https://doi.org/10.1016/j.febslet.2014.09.014

    Article  CAS  PubMed  Google Scholar 

  36. Quadros RM, Harms DW, Ohtsuka M et al (2015) Insertion of sequences at the original provirus integration site of mouse ROSA26 locus using the CRISPR/Cas9 system. FEBS Open Bio 5:191–197. https://doi.org/10.1016/j.fob.2015.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wefers B, Bashir S, Rossius J et al (2017) Gene editing in mouse zygotes using the CRISPR/Cas9 system. Methods (San Diego, CA) 121–122:55–67. https://doi.org/10.1016/j.ymeth.2017.02.008

    Article  CAS  Google Scholar 

  38. Chu VT, Weber T, Graf R et al (2016) Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnol 16:4. https://doi.org/10.1186/s12896-016-0234-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shin HY, Wang C, Lee HK et al (2017) CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat Commun 8:15464. https://doi.org/10.1038/ncomms15464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boroviak K, Fu B, Yang F et al (2017) Revealing hidden complexities of genomic rearrangements generated with Cas9. Sci Rep 7(1):12867. https://doi.org/10.1038/s41598-017-12740-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36(8):765–771. https://doi.org/10.1038/nbt.4192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cullot G, Boutin J, Toutain J et al (2019) CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat Commun 10(1):1136. https://doi.org/10.1038/s41467-019-09006-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Skarnes WC (2015) Is mouse embryonic stem cell technology obsolete? Genome Biol 16:109. https://doi.org/10.1186/s13059-015-0673-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ohtsuka M, Ogiwara S, Miura H et al (2010) Pronuclear injection-based mouse targeted transgenesis for reproducible and highly efficient transgene expression. Nucleic Acids Res 38(22):e198. https://doi.org/10.1093/nar/gkq860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ohtsuka M, Miura H, Mochida K et al (2015) One-step generation of multiple transgenic mouse lines using an improved Pronuclear Injection-based Targeted Transgenesis (i-PITT). BMC Genomics 16(1):274. https://doi.org/10.1186/s12864-015-1432-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Adam J, Yang M, Bauerschmidt C et al (2013) A role for cytosolic fumarate hydratase in urea cycle metabolism and renal neoplasia. Cell Rep 3(5):1440–1448. https://doi.org/10.1016/j.celrep.2013.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dolatshad H, Biggs D, Diaz R et al (2015) A versatile transgenic allele for mouse overexpression studies. Mamm Genome 26(11–12):598–608. https://doi.org/10.1007/s00335-015-9602-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McElroy SL, Reijo Pera RA (2008) Preparation of mouse embryonic fibroblast feeder cells for human embryonic stem cell culture. CSH Protoc 2008:pdb.prot5041. https://doi.org/10.1101/pdb.prot5041

    Article  PubMed  Google Scholar 

  49. Frendewey D, Chernomorsky R, Esau L et al (2010) The loss-of-allele assay for ES cell screening and mouse genotyping. Methods Enzymol 476:295–307. https://doi.org/10.1016/s0076-6879(10)76017-1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Biggs, D., Chen, Cm., Davies, B. (2023). Targeted Integration of Transgenes at the Mouse Gt(ROSA)26Sor Locus. In: Saunders, T.L. (eds) Transgenesis. Methods in Molecular Biology, vol 2631. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2990-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2990-1_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2989-5

  • Online ISBN: 978-1-0716-2990-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics