Skip to main content

Programmable Ultrasensitive Molecular Amplifier for Digital and Multiplex MicroRNA Quantification

Part of the Methods in Molecular Biology book series (MIMB,volume 2630)


Digital bioassays, popularized by digital PCR, provide some of the most robust and accurate methods for nucleic acid quantification. In this chapter, we detail a protocol for digital, isothermal, and multiplex detection of microRNAs, which relies on a recently developed amplification method. Our approach uses programmable ultrasensitive molecular amplifiers (PUMAs) to reveal the presence of target microRNAs randomly isolated in picoliter-size microfluidic droplets. Nonspecific amplification in droplets that do not contain a target is eliminated by an active threshold mechanism. Multiple circuits can be assembled for the multiplex digital detection of up to three targets. We finally present the option of using fluorescent dropcodes to streamline the assay and analyze more than a dozen samples in parallel.

Key words

  • Digital assay
  • MicroRNA
  • Multiplexing
  • Droplet microfluidics
  • PUMA
  • Molecular programming
  • DNA circuit

This is a preview of subscription content, access via your institution.

Buying options

USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-2982-6_7
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-2982-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more


  1. Vogelstein B, Kinzler KW (1999) Digital PCR. PNAS 96:9236–9241.

    CrossRef  CAS  Google Scholar 

  2. Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA (1992) Quantitation of targets for PCR by use of limiting dilution. BioTechniques 13:444–449

    CAS  Google Scholar 

  3. Stein EV, Duewer DL, Farkas N, Romsos EL, Wang L, Cole KD (2017) Steps to achieve quantitative measurements of microRNA using two step droplet digital PCR. PLoS One 12:e0188085.

    CrossRef  CAS  Google Scholar 

  4. Cohen L, Hartman MR, Amardey-Wellington A, Walt DR (2017) Digital direct detection of microRNAs using single molecule arrays. Nucleic Acids Res 45:e137–e137.

    CrossRef  CAS  Google Scholar 

  5. Zhang K, Kang D-K, Ali MM, Liu L, Labanieh L, Lu M, Riazifar H, Nguyen TN, Zell JA, Digman MA, Gratton E, Li J, Zhao W (2015) Digital quantification of miRNA directly in plasma using integrated comprehensive droplet digital detection. Lab Chip 15:4217.

    CrossRef  CAS  Google Scholar 

  6. Gines G, Menezes R, Nara K, Kirstetter A-S, Taly V, Rondelez Y (2020) Isothermal digital detection of microRNA using background-free molecular circuit, vol 6. Sci Adv, p eaay5952

    Google Scholar 

  7. Montagne K, Plasson R, Sakai Y, Fujii T, Rondelez Y (2011) Programming an in vitro DNA oscillator using a molecular networking strategy. Mol Syst Biol 7:466.

    CrossRef  Google Scholar 

  8. Baccouche A, Montagne K, Padirac A, Fujii T, Rondelez Y (2014) Dynamic DNA-toolbox reaction circuits: a walkthrough. Methods 67:234–249.

    CrossRef  CAS  Google Scholar 

  9. Rondelez Y, Gines G (2020) Multiplex digital microRNA detection using cross-inhibitory DNA circuits. ACS Sens 5:2430.

    CrossRef  CAS  Google Scholar 

  10. Yamagata A, Masui R, Kakuta Y, Kuramitsu S, Fukuyama K (2001) Overexpression, purification and characterization of RecJ protein from Thermus thermophilus HB8 and its core domain. Nucleic Acids Res 29:4617–4624

    CrossRef  CAS  Google Scholar 

  11. Montagne K, Gines G, Fujii T, Rondelez Y (2016) Boosting functionality of synthetic DNA circuits with tailored deactivation. Nat Commun 7:13474.

    CrossRef  CAS  Google Scholar 

  12. Glass NR, Tjeung R, Chan P, Yeo LY, Friend JR (2011) Organosilane deposition for microfluidic applications. Biomicrofluidics 5:036501.

    CrossRef  CAS  Google Scholar 

  13. Menezes R, Dramé-Maigné A, Taly V, Rondelez Y, Gines G (2019) Streamlined digital bioassays with a 3D printed sample changer. Analyst 145:572.

    CrossRef  Google Scholar 

  14. Baccouche A, Okumura S, Sieskind R, Henry E, Aubert-Kato N, Bredeche N, Bartolo J-F, Taly V, Rondelez Y, Fujii T, Genot AJ (2017) Massively parallel and multiparameter titration of biochemical assays with droplet microfluidics. Nat Protoc 12:1912–1932.

    CrossRef  CAS  Google Scholar 

Download references


Our research is supported by grants from the University Paris Sciences et Lettres and the European Research Council (ERC-2020-STG MoP-MiP 939394).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Guillaume Gines .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Rondelez, Y., Gines, G. (2023). Programmable Ultrasensitive Molecular Amplifier for Digital and Multiplex MicroRNA Quantification. In: Dalmay, T. (eds) MicroRNA Detection and Target Identification. Methods in Molecular Biology, vol 2630. Humana, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2981-9

  • Online ISBN: 978-1-0716-2982-6

  • eBook Packages: Springer Protocols