Skip to main content

High-Throughput and In-Depth Proteomic Profiling of 5 μL Plasma and Serum Using TMTpro 16-Plex

  • Protocol
  • First Online:
Serum/Plasma Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2628))

Abstract

High-throughput and in-depth proteomic analysis of plasma and serum samples remains challenging due to the presence of multiple high-abundance proteins. Here, we provide a detailed protocol for proteomic analysis of serum and plasma specimens using a high-abundance protein depletion kit and TMTpro 16-plex reagents. This method requires only 5 μL serum or plasma, identifying and quantifying about 1000 proteins. A batch of 16 samples can be processed in 36 h. On average, each sample consumes about 1.5 h of mass spectrometer instrument time. Overall, our method can identify proteins across six orders of magnitude with high reproducibility (CV < 20%) using a shorter instrument time and less sample volume compared to existing methods. Thus, the method is suitable to be applied to large-scale proteomic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Geyer PE, Holdt LM, Teupser D et al (2017) Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol 13:942

    Article  Google Scholar 

  2. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects*. Mol Cell Proteomics 1:845–867

    Article  CAS  Google Scholar 

  3. Pernemalm M, Lewensohn R, Lehtiö J (2009) Affinity prefractionation for MS-based plasma proteomics. Proteomics 9:1420–1427

    Article  CAS  Google Scholar 

  4. Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24:971–983

    Article  CAS  Google Scholar 

  5. Di Girolamo F, Righetti PG, Soste M et al (2013) Reproducibility of combinatorial peptide ligand libraries for proteome capture evaluated by selected reaction monitoring. J Proteome 89:215–226

    Article  Google Scholar 

  6. Pieper R, Su Q, Gatlin CL et al (2003) Multi-component immunoaffinity subtraction chromatography: an innovative step towards a comprehensive survey of the human plasma proteome. Proteomics 3:422–432

    Article  CAS  Google Scholar 

  7. Moulder R, Bhosale SD, Goodlett DR et al (2018) Analysis of the plasma proteome using iTRAQ and TMT-based isobaric labeling. Mass Spectrom Rev 37:583–606

    Article  CAS  Google Scholar 

  8. Lee PY, Osman J, Low TY et al (2019) Plasma/serum proteomics: depletion strategies for reducing high-abundance proteins for biomarker discovery. Bioanalysis 11:1799–1812

    Article  CAS  Google Scholar 

  9. Pietrowska M, Wlosowicz A, Gawin M et al (2019) MS-based proteomic analysis of serum and plasma: problem of high abundant components and lights and shadows of albumin removal. In: Advances in experimental medicine and biology, pp 57–76

    Google Scholar 

  10. Keshishian H, Burgess MW, Specht H et al (2017) Quantitative, multiplexed workflow for deep analysis of human blood plasma and biomarker discovery by mass spectrometry. Nat Protoc 12:1683–1701

    Article  CAS  Google Scholar 

  11. Roche S, Tiers L, Provansal M et al (2009) Depletion of one, six, twelve or twenty major blood proteins before proteomic analysis: the more the better? J Proteome 72:945–951

    Article  CAS  Google Scholar 

  12. Smith MPW, Wood SL, Zougman A et al (2011) A systematic analysis of the effects of increasing degrees of serum immunodepletion in terms of depth of coverage and other key aspects in top-down and bottom-up proteomic analyses. Proteomics 11:2222–2235

    Article  CAS  Google Scholar 

  13. Bruderer R, Muntel J, Müller S et al (2019) Analysis of 1508 plasma samples by capillary-flow data-independent acquisition profiles proteomics of weight loss and maintenance. Mol Cell Proteomics 18:1242–1254

    Article  CAS  Google Scholar 

  14. Deutsch EW, Omenn GS, Sun Z et al (2021) Advances and utility of the human plasma proteome. J Proteome Res 20:5241–5263

    Article  CAS  Google Scholar 

  15. Nakayasu ES, Gritsenko M, Piehowski PD et al (2021) Tutorial: best practices and considerations for mass-spectrometry-based protein biomarker discovery and validation. Nat Protoc 16:3737–3760

    Article  CAS  Google Scholar 

  16. Wewer Albrechtsen NJ, Geyer PE, Doll S et al (2018) Plasma proteome profiling reveals dynamics of inflammatory and lipid homeostasis markers after Roux-en-Y gastric bypass surgery. Cell Syst 7:601–612.e3

    Article  CAS  Google Scholar 

  17. Kulak NA, Geyer PE, Mann M (2017) Loss-less nano-fractionator for high sensitivity, high coverage proteomics. Mol Cell Proteomics 16:694–705

    Article  CAS  Google Scholar 

  18. Tognetti M, Sklodowski K, Müller S et al (2022) Biomarker candidates for tumors identified from deep-profiled plasma stem predominantly from the low abundant area. J Proteome Res 21:1718–1735

    Google Scholar 

  19. Li J, Cai Z, Bomgarden RD et al (2021) TMTpro-18plex: the expanded and complete set of TMTpro reagents for sample multiplexing. J Proteome Res 20:2964–2972

    Article  CAS  Google Scholar 

  20. Li J, Van Vranken JG, Pontano Vaites L et al (2020) TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Nat Methods 17:399–404

    Article  CAS  Google Scholar 

  21. Thompson A, Schäfer J, Kuhn K et al (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904

    Article  CAS  Google Scholar 

  22. Keshishian H, Burgess MW, Gillette MA et al (2015) Multiplexed, quantitative workflow for sensitive biomarker discovery in plasma yields novel candidates for early myocardial injury. Mol Cell Proteomics 14:2375–2393

    Article  CAS  Google Scholar 

  23. Dey KK, Wang H, Niu M et al. (2019) Deep undepleted human serum proteome profiling toward biomarker discovery for Alzheimer’s disease. Clin Proteomics 16(1):16. https://doi.org/10.1186/s12014-019-9237-1

  24. Tang S, Sun R, Xiao Q et al (2020) Proteomics uncovers immunosuppression in COVID-19 patients with long disease course. medRxiv 18:2020.06.14.20131078

    Google Scholar 

  25. Bi X, Liu W, Ding X et al (2022) Proteomic and metabolomic profiling of urine uncovers immune responses in patients with COVID-19. Cell Rep 38:110271

    Article  CAS  Google Scholar 

  26. Shen B, Yi X, Sun Y et al (2020) Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 182:59–72.e15

    Article  CAS  Google Scholar 

  27. Mertins P, Tang LC, Krug K et al (2018) Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nat Protoc 13:1632

    Article  CAS  Google Scholar 

  28. Gao H, Zhang F, Liang S et al (2020) Accelerated lysis and proteolytic digestion of biopsy-level fresh-frozen and FFPE tissue samples using pressure cycling technology. J Proteome Res 19:1982–1990

    Article  CAS  Google Scholar 

  29. Tu C, Rudnick PA, Martinez MY et al (2010) Depletion of abundant plasma proteins and limitations of plasma proteomics. J Proteome Res 9:4982–4991

    Article  CAS  Google Scholar 

  30. Zhu T, Sun R, Zhang F et al (2021) BatchServer: a web server for batch effect evaluation, visualization, and correction. J Proteome Res 20:1079–1086

    Article  CAS  Google Scholar 

  31. Chi H, Liu C, Yang H et al (2018) Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine. Nat Biotechnol 36:1059–1061

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Key R&D Program of China (2021YFA1301601, 2021YFA1301602, 2020YFE0202200), the National Natural Science Foundation of China (81972492, 21904107, 81672086), and Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars (LR19C050001) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiannan Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhou, Y. et al. (2023). High-Throughput and In-Depth Proteomic Profiling of 5 μL Plasma and Serum Using TMTpro 16-Plex. In: Greening, D.W., Simpson, R.J. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 2628. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2978-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2978-9_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2977-2

  • Online ISBN: 978-1-0716-2978-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics