Skip to main content

Homology Modeling of the G Protein-Coupled Receptors

  • Protocol
  • First Online:
Homology Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2627))

  • 600 Accesses

Abstract

G protein-coupled receptors (GPCRs) are therapeutically important family of membrane proteins. Despite growing number of experimental structures available for GPCRs, homology modeling remains a relevant method for studying these receptors and for discovering new ligands for them. Here we describe the state-of-the-art methods for modeling GPCRs, starting from template selection, through fine-tuning sequence alignment to model refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351. https://doi.org/10.1126/science.1058040

    Article  CAS  PubMed  Google Scholar 

  2. Pierce KL, Premont RT, Lefkowitz RJ (2002) Signalling: seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650. https://doi.org/10.1038/nrm908

    Article  CAS  PubMed  Google Scholar 

  3. Pasternak GW (2014) Opiate pharmacology and relief of pain. J Clin Oncol 32:1655–1661. https://doi.org/10.1200/JCO.2013.53.1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dorsam RT, Gutkind JS (2007) G-protein-coupled receptors and cancer. Nat Rev Cancer 7:79–94. https://doi.org/10.1038/nrc2069

    Article  CAS  PubMed  Google Scholar 

  5. Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272. https://doi.org/10.1124/mol.63.6.1256

    Article  CAS  PubMed  Google Scholar 

  6. Bjarnadóttir TK, Gloriam DE, Hellstrand SH et al (2006) Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88:263–273. https://doi.org/10.1016/j.ygeno.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  7. Frimurer TM, Ulven T, Elling CE et al (2005) A physicogenetic method to assign ligand-binding relationships between 7TM receptors. Bioorg Med Chem Lett 15:3707–3712. https://doi.org/10.1016/J.BMCL.2005.05.102

    Article  CAS  PubMed  Google Scholar 

  8. Ballesteros JA, Weinstein H (1995) [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Receptor molecular biology. Elsevier https://doi.org/10.1016/S1043-9471(05)80049-7

  9. Isberg V, De Graaf C, Bortolato A et al (2015) Generic GPCR residue numbers – aligning topology maps while minding the gaps. Trends Pharmacol Sci. https://doi.org/10.1016/j.tips.2014.11.001

  10. Tehan BG, Bortolato A, Blaney FE et al (2014) Unifying family A GPCR theories of activation. Pharmacol Ther 143:51–60. https://doi.org/10.1016/j.pharmthera.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  11. Liu T, Tang GW, Capriotti E (2011) Comparative modeling: the state of the art and protein drug target structure prediction. Comb Chem High Throughput Screen 14:532–547. https://doi.org/10.2174/138620711795767811

    Article  PubMed  Google Scholar 

  12. Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bajaj M, Blundell T (1984) Evolution and the tertiary structure of proteins. Annu Rev Biophys Bioeng 13:453–492. https://doi.org/10.1146/annurev.bb.13.060184.002321

    Article  CAS  PubMed  Google Scholar 

  14. Tang H, Wang XS, Hsieh J-H, Tropsha A (2012) Do crystal structures obviate the need for theoretical models of GPCRs for structure-based virtual screening? Proteins 80:1503–1521. https://doi.org/10.1002/prot.24035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rataj K, Witek J, Mordalski S et al (2014) Impact of template choice on homology model efficiency in virtual screening. J Chem Inf Model 54:1661–1668. https://doi.org/10.1021/ci500001f

    Article  CAS  PubMed  Google Scholar 

  16. Kufareva I, Rueda M, Katritch V et al (2011) Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment. Structure 19:1108–1126. https://doi.org/10.1016/j.str.2011.05.012

    Article  CAS  PubMed  Google Scholar 

  17. Wheatley M, Simms J, Hawtin SR et al (2007) Extracellular loops and ligand binding to a subfamily of Family A G-protein-coupled receptors. Biochem Soc Trans 35:717–720. https://doi.org/10.1042/BST0350717

    Article  CAS  PubMed  Google Scholar 

  18. Manglik A, Kruse AC, Kobilka TS et al (2012) Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485:321–326. https://doi.org/10.1038/nature10954

    Article  CAS  PubMed  Google Scholar 

  19. Dror RO, Pan AC, Arlow DH et al (2011) Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci U S A 108:13118–13123. https://doi.org/10.1073/pnas.1104614108

    Article  PubMed  Google Scholar 

  20. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Foster SR, Hauser AS, Vedel L et al (2019) Discovery of human signaling systems: pairing peptides to G protein-coupled receptors. Cell 179:895–908.e21. https://doi.org/10.1016/J.CELL.2019.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rosenbaum DM, Zhang C, Lyons JA et al (2011) Structure and function of an irreversible agonist-β(2) adrenoceptor complex. Nature 469:236–240. https://doi.org/10.1038/nature09665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weichert D, Kruse AC, Manglik A et al (2014) Covalent agonists for studying G protein-coupled receptor activation. Proc Natl Acad Sci U S A 111:10744–10748. https://doi.org/10.1073/pnas.1410415111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ring AM, Manglik A, Kruse AC et al (2013) Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature 502:575–579. https://doi.org/10.1038/nature12572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zou Y, Weis WI, Kobilka BK (2012) N-terminal T4 lysozyme fusion facilitates crystallization of a G protein coupled receptor. PLoS One 7:e46039. https://doi.org/10.1371/journal.pone.0046039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Staus DP, Strachan RT, Manglik A et al (2016) Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature 535:448–452. https://doi.org/10.1038/nature18636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trzaskowski B, Latek D, Yuan S et al (2012) Action of molecular switches in GPCRs--theoretical and experimental studies. Curr Med Chem 19:1090–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Filipek S (2019) Molecular switches in GPCRs. Curr Opin Struct Biol 55:114–120. https://doi.org/10.1016/J.SBI.2019.03.017

    Article  CAS  PubMed  Google Scholar 

  29. Fritze O, Filipek S, Kuksa V et al (2003) Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation. Proc Natl Acad Sci U S A 100:2290–2295. https://doi.org/10.1073/pnas.0435715100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pándy-Szekeres G, Munk C, Tsonkov TM et al (2018) GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res 46:D440–D446. https://doi.org/10.1093/nar/gkx1109

    Article  CAS  PubMed  Google Scholar 

  31. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  32. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinform 10:421. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  Google Scholar 

  33. Elgeti M, Rose AS, Bartl FJ et al (2013) Precision vs flexibility in GPCR signaling. J Am Chem Soc 135:12305–12312. https://doi.org/10.1021/ja405133k

    Article  CAS  PubMed  Google Scholar 

  34. Jaiteh M, Rodríguez-Espigares I, Selent J, Carlsson J (2020) Performance of virtual screening against GPCR homology models: impact of template selection and treatment of binding site plasticity. PLoS Comput Biol 16:e1007680. https://doi.org/10.1371/journal.pcbi.1007680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vass M, Schmidt É, Horti F, Keserű GM (2014) Virtual fragment screening on GPCRs: a case study on dopamine D3 and histamine H4 receptors. Eur J Med Chem 77:38–46. https://doi.org/10.1016/J.EJMECH.2014.02.034

    Article  CAS  PubMed  Google Scholar 

  36. Mordalski S, Witek J, Smusz S et al (2015) Multiple conformational states in retrospective virtual screening – homology models vs. crystal structures: beta-2 adrenergic receptor case study. J Cheminform 7:13. https://doi.org/10.1186/s13321-015-0062-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kufareva I, Katritch V, Stevens RC, Abagyan R (2014) Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment: meeting new challenges. Structure 22:1120–1139. https://doi.org/10.1016/j.str.2014.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miszta P, Pasznik P, Jakowiecki J et al (2018) GPCRM: a homology modeling web service with triple membrane-fitted quality assessment of GPCR models. Nucleic Acids Res 46:W387–W395. https://doi.org/10.1093/nar/gky429

    Article  CAS  PubMed  Google Scholar 

  39. Esguerra M, Siretskiy A, Bello X et al (2016) GPCR-ModSim: a comprehensive web based solution for modeling G-protein coupled receptors. Nucleic Acids Res 44:W455–W462. https://doi.org/10.1093/nar/gkw403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Waterhouse A, Bertoni M, Bienert S et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303. https://doi.org/10.1093/nar/gky427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Isberg V, Mordalski S, Munk C et al (2016) GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res. https://doi.org/10.1093/nar/gkv1178

  42. Moreira IS, Shi L, Freyberg Z et al (2010) Structural basis of dopamine receptor activation. In: The dopamine receptors. Humana Press, Totowa, pp 47–73

    Chapter  Google Scholar 

  43. Storjohann L, Holst B, Schwartz TW (2008) Molecular mechanism of Zn2+ agonism in the extracellular domain of GPR39. FEBS Lett 582:2583–2588. https://doi.org/10.1016/J.FEBSLET.2008.06.030

    Article  CAS  PubMed  Google Scholar 

  44. Wacker D, Wang C, Katritch V et al (2013) Structural features for functional selectivity at serotonin receptors. Science 340:615–619. https://doi.org/10.1126/science.1232808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shang Y, LeRouzic V, Schneider S et al (2014) Mechanistic insights into the allosteric modulation of opioid receptors by sodium ions. Biochemistry 53:5140–5149. https://doi.org/10.1021/bi5006915

    Article  CAS  PubMed  Google Scholar 

  46. Venkatakrishnan AJ, Deupi X, Lebon G et al (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194. https://doi.org/10.1038/nature11896

    Article  CAS  PubMed  Google Scholar 

  47. Glukhova A, Draper-Joyce CJ, Sunahara RK et al (2018) Rules of engagement: GPCRs and G proteins. ACS Pharmacol Transl Sci 1:73–83. https://doi.org/10.1021/acsptsci.8b00026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Mordalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mordalski, S., Kościółek, T. (2023). Homology Modeling of the G Protein-Coupled Receptors. In: Filipek, S. (eds) Homology Modeling. Methods in Molecular Biology, vol 2627. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2974-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2974-1_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2973-4

  • Online ISBN: 978-1-0716-2974-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics