Skip to main content

Specificities of Modeling of Membrane Proteins Using Multi-Template Homology Modeling

  • Protocol
  • First Online:
Homology Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2627))

Abstract

Structures of membrane proteins are challenging to determine experimentally and currently represent only about 2% of the structures in the Protein Data Bank. Because of this disparity, methods for modeling membrane proteins are fewer and of lower quality than those for modeling soluble proteins. However, better expression, crystallization, and cryo-EM techniques have prompted a recent increase in experimental structures of membrane proteins, which can act as templates to predict the structure of closely related proteins through homology modeling. Because homology modeling relies on a structural template, it is easier and more accurate than fold recognition methods or de novo modeling, which are used when the sequence similarity between the query sequence and the sequence of related proteins in structural databases is below 25%. In homology modeling, a query sequence is mapped onto the coordinates of a single template and refined. With the increase in available templates, several templates often cover overlapping segments of the query sequence. Multi-template modeling can be used to identify the best template for local segments and join them into a single model. Here we provide a protocol for modeling membrane proteins from multiple templates in the Rosetta software suite. This approach takes advantage of several integrated frameworks, namely, RosettaScripts, RosettaCM, and RosettaMP with the membrane scoring function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. In: Current protocols in bioinformatics. Wiley, Hoboken, pp 5.6.1–5.6.37

    Google Scholar 

  2. Bienert S, Waterhouse A, de Beer TAP et al (2017) The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Res 45:D313–D319. https://doi.org/10.1093/nar/gkw1132

    Article  CAS  PubMed  Google Scholar 

  3. Yang J, Zhang Y (2015) Protein structure and function prediction using I-TASSER. In: Current protocols in bioinformatics. Wiley, Hoboken, pp 5.8.1–5.8.15

    Google Scholar 

  4. Zhang J, Yang J, Jang R, Zhang Y (2015) GPCR-I-TASSER: a hybrid approach to G protein-coupled receptor structure modeling and the application to the human genome. Structure 23:1538–1549. https://doi.org/10.1016/j.str.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  5. Kelm S, Shi J, Deane CM (2010) MEDELLER: homology-based coordinate generation for membrane proteins. Bioinformatics 26:2833–2840. https://doi.org/10.1093/bioinformatics/btq554

    Article  CAS  PubMed  Google Scholar 

  6. Koehler Leman J, Ulmschneider MB, Gray JJ (2015) Computational modeling of membrane proteins. Proteins Struct Funct Bioinform 83:1–24. https://doi.org/10.1002/prot.24703

    Article  CAS  Google Scholar 

  7. Song Y, Dimaio F, Wang RY-RR et al (2013) High-resolution comparative modeling with RosettaCM. Structure 21:1735–1742. https://doi.org/10.1016/j.str.2013.08.005

    Article  CAS  PubMed  Google Scholar 

  8. Christie DL (2007) Functional insights into the creatine transporter. Subcell Biochem 46:99–118. https://doi.org/10.1007/978-1-4020-6486-9_6

    Article  PubMed  Google Scholar 

  9. Salazar MD, Zelt NB, Saldivar R et al (2020) Classification of the molecular defects associated with pathogenic variants of the SLC6A8 creatine transporter. Biochemistry 59:1367–1377. https://doi.org/10.1021/acs.biochem.9b00956

    Article  CAS  PubMed  Google Scholar 

  10. Koehler Leman, J., Weitzner, B. D., Lewis, S. M., Adolf-Bryfogle, J., Alam, N., Alford, R. F., Aprahamian, M., Baker, D., Barlow, K. A., Barth, P., Basanta, B., Bender, B. J., Blacklock, K., Bonet, J., Boyken, S. E., Bradley, P., Bystroff, C., Conway, P., Cooper, S., Correia, B. E., Coventry, B., Das, R., De Jong, R. M., DiMaio, F., Dsilva, L., Dunbrack, R., Ford, A. S., Frenz, B., Fu, D. Y., Geniesse, C., Goldschmidt, L., Gowthaman, R., Gray, J. J., Gront, D., Guffy, S., Horowitz, S., Huang, P. S., Huber, T., Jacobs, T. M., Jeliazkov, J. R., Johnson, D. K., Kappel, K., Karanicolas, J., Khakzad, H., Khar, K. R., Khare, S. D., Khatib, F., Khramushin, A., King, I. C., Kleffner, R., Koepnick, B., Kortemme, T., Kuenze, G., Kuhlman, B., Kuroda, D., Labonte, J. W., Lai, J. K., Lapidoth, G., Leaver-Fay, A., Lindert, S., Linsky, T., London, N., Lubin, J. H., Lyskov, S., Maguire, J., Malmström, L., Marcos, E., Marcu, O., Marze, N. A., Meiler, J., Moretti, R., Mulligan, V. K., Nerli, S., Norn, C., Ó’Conchúir, S., Ollikainen, N., Ovchinnikov, S., Pacella, M. S., Pan, X., Park, H., Pavlovicz, R. E., Pethe, M., Pierce, B. G., Pilla, K. B., Raveh, B., Renfrew, P. D., Burman, S. S. R., Rubenstein, A., Sauer, M. F., Scheck, A., Schief, W., Schueler-Furman, O., Sedan, Y., Sevy, A. M., Sgourakis, N. G., Shi, L., Siegel, J. B., Silva, D. A., Smith, S., Song, Y., Stein, A., Szegedy, M., Teets, F. D., Thyme, S. B., Wang, R. Y. R., Watkins, A., Zimmerman, L. & Bonneau, R. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat. Methods 2020 177 17, 665–680 (2020).

    Google Scholar 

  11. Alford RF, Leaver-Fay A, Jeliazkov JR et al (2017) The Rosetta all-atom energy function for macromolecular modeling and design. J Chem Theory Comput 13:1–35. https://doi.org/10.1101/106054

    Article  CAS  Google Scholar 

  12. Leaver-Fay A, Tyka M, Lewis SM et al (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574. https://doi.org/10.1016/B978-0-12-381270-4.00019-6.R

    Article  CAS  PubMed  Google Scholar 

  13. Alford RF, Koehler Leman J, Weitzner BD et al (2015) An integrated framework advancing membrane protein modeling and design. PLoS Comput Biol 11:e1004398. https://doi.org/10.1371/journal.pcbi.1004398

    Article  CAS  PubMed  Google Scholar 

  14. Alford RF, Fleming PJ, Fleming KG, Gray JJ (2019) Protein structure prediction and design in a biologically-realistic implicit membrane. bioRxiv 630715. https://doi.org/10.1101/630715

  15. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinform 10:421. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  Google Scholar 

  16. Kothiwale S, Mendenhall JL, Meiler J (2015) BCL::Conf: small molecule conformational sampling using a knowledge based rotamer library. J Cheminform 7:47. https://doi.org/10.1186/s13321-015-0095-1

    Article  CAS  PubMed  Google Scholar 

  17. Software: The PyMOL Molecular Graphics System, Version 1.8, Schroedinger LLC

    Google Scholar 

  18. Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM (2006) MUSTANG: a multiple structural alignment algorithm. Proteins Struct Funct Bioinform 64:559–574. https://doi.org/10.1002/prot.20921

    Article  CAS  Google Scholar 

  19. Waterhouse AM, Procter JB, Martin DMA et al (2009) Jalview Version 2-A multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. https://doi.org/10.1093/bioinformatics/btp033

    Article  CAS  PubMed  Google Scholar 

  20. UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212. https://doi.org/10.1093/nar/gku989

    Article  CAS  Google Scholar 

  21. Rose PW, Prlić A, Bi C et al (2015) The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res 43:D345–D356. https://doi.org/10.1093/nar/gku1214

    Article  CAS  PubMed  Google Scholar 

  22. Koehler Leman J, Mueller BK, Gray JJ (2016) Expanding the toolkit for membrane protein modeling in Rosetta. Bioinformatics 11:1–3. https://doi.org/10.1093/bioinformatics/btw716

    Article  CAS  Google Scholar 

  23. Katoh K, Rozewicki J, Yamada KD (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160. https://doi.org/10.1093/bib/bbx108

    Article  CAS  Google Scholar 

  24. Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic acids Res 32:526–531. https://doi.org/10.1093/nar/gkh468

    Article  CAS  Google Scholar 

  25. New Robetta server – http://new.robetta.org/

  26. Fleishman SJ, Leaver-Fay A, Corn JE et al (2011) RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. PLoS One 6:1–10. https://doi.org/10.1371/journal.pone.0020161

    Article  CAS  Google Scholar 

  27. Bender BJ, Cisneros A, Duran AM et al (2016) Protocols for molecular modeling with Rosetta3 and RosettaScripts. Biochemistry 55:4748. https://doi.org/10.1021/acs.biochem.6b00444

    Article  CAS  PubMed  Google Scholar 

  28. Groom CR, Bruno IJ, Lightfoot MP et al (2016) The Cambridge structural database. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:171–179. https://doi.org/10.1107/S2052520616003954

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Koehler Leman, J., Bonneau, R. (2023). Specificities of Modeling of Membrane Proteins Using Multi-Template Homology Modeling. In: Filipek, S. (eds) Homology Modeling. Methods in Molecular Biology, vol 2627. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2974-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2974-1_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2973-4

  • Online ISBN: 978-1-0716-2974-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics