Skip to main content

Homology Modeling of Antibody Variable Regions: Methods and Applications

  • Protocol
  • First Online:
Homology Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2627))

Abstract

Adaptive immunity specifically protects us from antigenic challenges. Antibodies are key effector proteins of adaptive immunity, and they are remarkable in their ability to recognize a virtually limitless number of antigens. Fragment variable (FV), the antigen-binding region of antibodies, can be split into two main components, namely, framework and complementarity determining regions. The framework (FR) consists of light-chain framework (FRL) and heavy-chain framework (FRH). Similarly, the complementarity determining regions (CDRs) comprises of light-chain CDRs 1–3 (CDRs L1–3) and heavy-chain CDRs 1–3 (CDRs H1–3). While FRs are relatively constant in sequence and structure across diverse antibodies, sequence variation in CDRs leading to differential conformations of CDR loops accounts for the distinct antigenic specificities of diverse antibodies. The conserved structural features in FRs and conformity of CDRs to a limited set of standard conformations allow for the accurate prediction of FV models using homology modeling techniques. Antibody structure prediction from its amino acid sequence has numerous important applications including prediction of antibody-antigen interaction interfaces and redesign of therapeutically and biotechnologically useful antibodies with improved affinity. This chapter summarizes the current practices employed in the successful homology modeling of antibody variable regions and the potential applications of the generated homology models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chi X, Li Y, Qiu X (2020) V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation. Immunology 160:233–247

    Article  CAS  PubMed Central  Google Scholar 

  2. Bansia H, Bagaria S, Karande AA, Ramakumar S (2019) Structural basis for neutralization of cytotoxic abrin by monoclonal antibody D6F10. FEBS J 286:1003–1029

    Article  CAS  Google Scholar 

  3. Gowthaman R, Guest JD, Yin R, Adolf-Bryfogle J, Schief WR, Pierce BG (2020) CoV3D: a database of high resolution coronavirus protein structures. Nucleic Acids Res 49:282–287

    Article  Google Scholar 

  4. Tortorici MA, Beltramello M, Lempp FA, Pinto D, Dang HV, Rosen LE et al (2020) Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science 370:950–957

    Article  CAS  PubMed Central  Google Scholar 

  5. Wajnberg A, Amanat F, Firpo A, Altman DR, Bailey MJ, Mansour M et al (2020) Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science 370:1227–1230

    Article  CAS  PubMed Central  Google Scholar 

  6. Hurlburt NK, Seydoux E, Wan YH, Edara VV, Stuart AB, Feng J et al (2020) Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation. Nat Commun 11(1):5413

    Article  PubMed Central  Google Scholar 

  7. Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M et al (2020) Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell 183:1024–1042

    Article  CAS  PubMed Central  Google Scholar 

  8. Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB et al (2020) SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588:682–687

    Article  CAS  PubMed Central  Google Scholar 

  9. Yuan M, Wu NC, Zhu X, Lee CD, So RTY, Lv H et al (2020) A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368:630–633

    Article  CAS  PubMed Central  Google Scholar 

  10. Bansia H, Mahanta P, Yennawar NH, Ramakumar S (2021) Small glycols discover cryptic pockets on proteins for fragment-based approaches. J Chem Inf Model 61:1322–1333

    Article  CAS  Google Scholar 

  11. Shirai H, Ikeda K, Yamashita K, Tsuchiya Y, Sarmiento J, Liang S et al (2014) High-resolution modeling of antibody structures by a combination of bioinformatics, expert knowledge, and molecular simulations. Proteins 82:1624–1635

    Article  CAS  Google Scholar 

  12. Almagro JC, Teplyakov A, Luo J, Sweet RW, Kodangattil S, Hernandez-Guzman F et al (2014) Second antibody modeling assessment (AMA-II). Proteins 82:1553–1562

    Article  CAS  Google Scholar 

  13. Surendranath K, Karande AA (2008) A neutralizing antibody to the a chain of abrin inhibits abrin toxicity both in vitro and in vivo. Clin Vaccine Immunol 15:737–743

    Article  CAS  PubMed Central  Google Scholar 

  14. Bagaria S, Ponnalagu D, Bisht S, Karande AA (2013) Mechanistic insights into the neutralization of cytotoxic abrin by the monoclonal antibody D6F10. PLoS One 8(7):e70273

    Article  CAS  PubMed Central  Google Scholar 

  15. Georgiou G, Ippolito GC, Beausang J, Busse CE, Wardemann H, Quake SR (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 32:158–168

    Article  CAS  PubMed Central  Google Scholar 

  16. Kuroda D, Shirai H, Jacobson MP, Nakamura H (2012) Computer aided antibody design. Protein Eng Des Sel 25:507–521

    Article  CAS  PubMed Central  Google Scholar 

  17. Kaplon H, Muralidharan M, Schneider Z, Reichert JM (2020) Antibodies to watch in 2020. MAbs 12(1):1703531

    Article  Google Scholar 

  18. Lippow SM, Wittrup KD, Tidor B (2007) Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol 25:1171–1176

    Article  CAS  PubMed Central  Google Scholar 

  19. Sivasubramanian A, Sircar A, Chaudhury S, Gray JJ (2009) Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking. Proteins 74:497–514

    Article  CAS  PubMed Central  Google Scholar 

  20. Pedotti M, Simonelli L, Livoti E, Varani L (2011) Computational docking of antibody-antigen complexes, opportunities and pitfalls illustrated by influenza hemagglutinin. Int J Mol Sci 12:226–251

    Article  CAS  PubMed Central  Google Scholar 

  21. Correia BE, Bates JT, Loomis RJ, Baneyx G, Carrico C, Jardine JG et al (2014) Proof of principle for epitope-focused vaccine design. Nature 507:201–206

    Article  CAS  PubMed Central  Google Scholar 

  22. Hoos A, Ibrahim R, Korman A, Abdallah K, Berman D, Shahabi V et al (2010) Development of ipilimumab: contribution to a new paradigm for cancer immunotherapy. Semin Oncol 37:533–546

    Article  CAS  Google Scholar 

  23. Callahan MK, Wolchok JD, Allison JP (2010) Anti-CTLA-4 antibody therapy: immune monitoring during clinical development of a novel immunotherapy. Semin Oncol 37:473–484

    Article  CAS  PubMed Central  Google Scholar 

  24. Yasunaga M (2020) Antibody therapeutics and immunoregulation in cancer and autoimmune disease. Semin Cancer Biol 64:1–12

    Article  CAS  Google Scholar 

  25. Hafeez U, Gan HK, Scott AM (2018) Monoclonal antibodies as immunomodulatory therapy against cancer and autoimmune diseases. Curr Opin Pharmacol 41:114–121

    Article  CAS  Google Scholar 

  26. Norman RA, Ambrosetti F, Bonvin AMJJ, Colwell LJ, Kelm S, Kumar S et al (2020) Computational approaches to therapeutic antibody design: established methods and emerging trends. Brief Bioinform 21:1549–1567

    Article  Google Scholar 

  27. Chiu ML, Goulet DR, Teplyakov A, Gilliland GL (2019) Antibody structure and function: the basis for engineering therapeutics. Antibodies 8(4):55

    Article  CAS  PubMed Central  Google Scholar 

  28. Wu TT, Kabat EA (1970) An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 132:211–250

    Article  CAS  PubMed Central  Google Scholar 

  29. Padlan EA (1994) Anatomy of the antibody molecule. Mol Immunol 31:169–217

    Article  CAS  Google Scholar 

  30. Hayes JM, Cosgrave EF, Struwe WB, Wormald M, Davey GP, Jefferis R et al (2014) Glycosylation and Fc receptors. Curr Top Microbiol Immunol 382:165–199

    CAS  Google Scholar 

  31. Collis AV, Brouwer AP, Martin AC (2003) Analysis of the antigen combining site: correlations between length and sequence composition of the hypervariable loops and the nature of the antigen. J Mol Biol 325:337–354

    Article  CAS  Google Scholar 

  32. North B, Lehmann A, Dunbrack RL (2011) A new clustering of antibody CDR loop conformations. J Mol Biol 406:228–256

    Article  CAS  Google Scholar 

  33. Al-Lazikani B, Lesk AM, Chothia C (1997) Standard conformations for the canonical structures of immunoglobulins. J Mol Biol 273:927–948

    Article  CAS  Google Scholar 

  34. Adolf-Bryfogle J, Xu Q, North B, Lehmann A, Dunbrack RL (2015) PyIgClassify: a database of antibody CDR structural classifications. Nucleic Acids Res 43:432–438

    Article  Google Scholar 

  35. Reczko M, Martin AC, Bohr H, Suhai S (1995) Prediction of hypervariable CDR-H3 loop structures in antibodies. Protein Eng 8:389–395

    Article  CAS  Google Scholar 

  36. Zhu K, Day T (2013) Ab initio structure prediction of the antibody hypervariable H3 loop. Proteins 81:1081–1089

    Article  CAS  Google Scholar 

  37. Weitzner BD, Jeliazkov JR, Lyskov S, Marze N, Kuroda D, Frick R et al (2017) Modeling and docking of antibody structures with Rosetta. Nat Protoc 12:401–416

    Article  CAS  PubMed Central  Google Scholar 

  38. Marcatili P, Olimpieri PP, Chailyan A, Tramontano A (2014) Antibody modeling using the prediction of immunoglobulin structure (PIGS) web server [corrected]. Nat Protoc 9:2771–2783

    Article  CAS  Google Scholar 

  39. Yamashita K, Ikeda K, Amada K, Liang S, Tsuchiya Y, Nakamura H et al (2014) Kotai Antibody Builder: automated high-resolution structural modeling of antibodies. Bioinformatics 30:3279–3280

    Article  CAS  Google Scholar 

  40. Leem J, Dunbar J, Georges G, Shi J, Deane CM (2016) ABodyBuilder: automated antibody structure prediction with data-driven accuracy estimation. MAbs 8:1259–1268

    Article  CAS  PubMed Central  Google Scholar 

  41. Dondelinger M, Filée P, Sauvage E, Quinting B, Muyldermans S, Galleni M et al (2018) Understanding the significance and implications of antibody numbering and antigen-binding surface/residue definition. Front Immunol 9:2278

    Article  PubMed Central  Google Scholar 

  42. Kabat EA, Wu TT, Bilofsky H (1976) Attempts to locate residues in complementarity-determining regions of antibody combining sites that make contact with antigen. Proc Natl Acad Sci U S A 73:617–619

    Article  CAS  PubMed Central  Google Scholar 

  43. Johnson G, Wu TT (2000) Kabat database and its applications: 30 years after the first variability plot. Nucleic Acids Res 28:214–218

    Article  CAS  PubMed Central  Google Scholar 

  44. Abhinandan KR, Martin AC (2008) Analysis and improvements to Kabat and structurally correct numbering of antibody variable domains. Mol Immunol 45:3832–3839

    Article  CAS  Google Scholar 

  45. Kontermann R, Dübel S (eds) (2010) Antibody engineering. Springer protocols handbooks. Springer, Berlin, Heidelberg, pp 33–51

    Google Scholar 

  46. Honegger A, Plückthun A (2001) Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool. J Mol Biol 309:657–670

    Article  CAS  Google Scholar 

  47. Lefranc M-P, Pommié C, Ruiz M, Giudicelli V, Foulquier E, Truong L et al (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27:55–77

    Article  CAS  Google Scholar 

  48. Ehrenmann F, Kaas Q, Lefranc MP (2010) IMGT/3Dstructure-DB and IMGT/DomainGapAlign: a database and a tool for immunoglobulins or antibodies, T cell receptors, MHC, IgSF and MhcSF. Nucleic Acids Res 38:301–307

    Article  Google Scholar 

  49. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    Article  PubMed Central  Google Scholar 

  50. Dunbar J, Krawczyk K, Leem J, Baker T, Fuchs A, Georges G et al (2014) SAbDab: the structural antibody database. Nucleic Acids Res 42:1140–1146

    Article  Google Scholar 

  51. Foote J, Winter G (1992) Antibody framework residues affecting the conformation of the hypervariable loops. J Mol Biol 224:487–499

    Article  CAS  Google Scholar 

  52. Nakanishi T, Tsumoto K, Yokota A, Kondo H, Kumagai I (2008) Critical contribution of VH-VL interaction to reshaping of an antibody: the case of humanization of anti-lysozyme antibody, HyHEL-10. Protein Sci 17:261–270

    Article  CAS  PubMed Central  Google Scholar 

  53. Bujotzek A, Dunbar J, Lipsmeier F, Schäfer W, Antes I, Deane CM et al (2015) Prediction of VH-VL domain orientation for antibody variable domain modeling. Proteins 83:681–695

    Article  CAS  Google Scholar 

  54. Choi Y, Deane CM (2010) FREAD revisited: accurate loop structure prediction using a database search algorithm. Proteins 78:1431–1440

    Article  CAS  Google Scholar 

  55. Canutescu AA, Dunbrack RL (2003) Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci 12:963–972

    Article  CAS  PubMed Central  Google Scholar 

  56. Kuroda D, Shirai H, Kobori M, Nakamura H (2008) Structural classification of CDR-H3 revisited: a lesson in antibody modeling. Proteins 73:608–620

    Article  CAS  Google Scholar 

  57. Lis M, Kim T, Sarmiento J, Kuroda D, Dinh HQ, Kinjo A et al (2011) Bridging the gap between single-template and fragment based protein structure modeling using Spanner. Immunome Res 7:1–8

    Article  Google Scholar 

  58. Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, Rohl CA et al (2003) Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J Mol Biol 331:281–299

    Article  CAS  Google Scholar 

  59. Krivov GG, Shapovalov MV, Dunbrack RL (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77:778–795

    Article  CAS  PubMed Central  Google Scholar 

  60. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  61. Adolf-Bryfogle J, Kalyuzhniy O, Kubitz M, Weitzner BD, Hu X, Adachi Y et al (2018) RosettaAntibodyDesign (RAbD): a general framework for computational antibody design. PLoS Comput Biol 14(4):e1006112

    Article  PubMed Central  Google Scholar 

  62. Warszawski S, Borenstein Katz A, Lipsh R, Khmelnitsky L, Ben Nissan G, Javitt G et al (2019) Optimizing antibody affinity and stability by the automated design of the variable light-heavy chain interfaces. PLoS Comput Biol 15(8):e1007207

    Article  CAS  PubMed Central  Google Scholar 

  63. Jeliazkov JR, Frick R, Zhou J, Gray JJ (2021) Robustification of RosettaAntibody and Rosetta SnugDock. PLoS One 16(3):e0234282

    Article  CAS  PubMed Central  Google Scholar 

  64. Gao W, Mahajan SP, Sulam J, Gray JJ (2020) Deep learning in protein structural modeling and design. Patterns (N Y) 1(9):100142

    Article  CAS  Google Scholar 

  65. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589

    Article  CAS  PubMed Central  Google Scholar 

  66. Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR et al (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:871–876

    Article  CAS  PubMed Central  Google Scholar 

  67. Ruffolo JA, Sulam J, Gray JJ (2022) Antibody structure prediction using interpretable deep learning. Patterns (N Y) 3(2):100406

    Article  CAS  Google Scholar 

  68. Abanades B, Georges G, Bujotzek A, Deane CM (2022) ABlooper: fast accurate antibody CDR loop structure prediction with accuracy estimation. Bioinformatics 38:1877–1880

    Article  CAS  PubMed Central  Google Scholar 

  69. Martin AC (1996) Accessing the Kabat antibody sequence database by computer. Proteins 25:130–133

    Article  CAS  Google Scholar 

  70. Dunbar J, Fuchs A, Shi J, Deane CM (2013) ABangle: characterising the VH-VL orientation in antibodies. Protein Eng Des Sel 26:611–620

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harsh Bansia or Suryanarayanarao Ramakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bansia, H., Ramakumar, S. (2023). Homology Modeling of Antibody Variable Regions: Methods and Applications. In: Filipek, S. (eds) Homology Modeling. Methods in Molecular Biology, vol 2627. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2974-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2974-1_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2973-4

  • Online ISBN: 978-1-0716-2974-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics