Skip to main content

Modeling of SARS-CoV-2 Virus Proteins: Implications on Its Proteome

  • Protocol
  • First Online:
Homology Modeling

Abstract

COronaVIrus Disease 19 (COVID-19) is a severe acute respiratory syndrome (SARS) caused by a group of beta coronaviruses, SARS-CoV-2. The SARS-CoV-2 virus is similar to previous SARS- and MERS-causing strains and has infected nearly six hundred and fifty million people all over the globe, while the death toll has crossed the six million mark (as of December, 2022). In this chapter, we look at how computational modeling approaches of the viral proteins could help us understand the various processes in the viral life cycle inside the host, an understanding of which might provide key insights in mitigating this and future threats. This understanding helps us identify key targets for the purpose of drug discovery and vaccine development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3CL-pro:

3C-like protease

Ace2:

Angiotensin-converting enzyme II

Arg:

Arginine

BLAST:

Basic Local Alignment Search Tool

BST-2:

Bone marrow stromal antigen type 2

CDK:

Cyclin-dependent kinase

CHARMM:

Chemistry at Harvard Macromolecular Mechanics

COVID-19:

Coronavirus Disease 19

Cryo-EM:

Cryo-electron microscopy

CTD:

C terminal domain

E:

Envelope protein

ERGIC:

Endoplasmic reticulum–Golgi intermediate compartment

EVD:

Extreme value distribution

GROMOS:

GROningen MOlecular Simulation

IFN:

Interferon

Leu:

Leucine

Lys:

Lysine

M:

Membrane protein

MD:

Molecular dynamics

MERS:

Middle East Respiratory Syndrome

N:

Nucleocapsid protein

NiRAN:

NidovirusRdRp-associated nucleotidyl transferase

NLS:

Nuclear localization signal

NMR:

Nuclear Magnetic resonance

NRP:

Neuropilin

Nsps:

Nonstructural proteins

NTD:

N terminal domain

ORF:

Open reading frame

PBM:

PDZ-binding motif

PD:

Peptidase domain

Phe:

Phenylalanine

Pro:

Proline

PTM:

Post-translational modification

RBD:

Receptor binding domain

RBM:

Receptor binding motif

RdRp:

RNA-dependent RNA polymerase

RMSD:

Root mean square deviation

S:

Spike protein

SARS:

Severe acute respiratory syndrome

Ser:

Serine

SVM:

Support vector machine

TBM:

Template-based modeling

V-ATPase:

Vacuolar-H+ ATPase

VSR:

Viral suppressor of RNAi

References

  1. Agarwal PK (2006) Enzymes: an integrated view of structure, dynamics and function. Microb Cell Factories 5:2. https://doi.org/10.1186/1475-2859-5-2

    Article  CAS  Google Scholar 

  2. Lee MJ, Yaffe MB (2016) Protein regulation in signal transduction. Cold Spring Harb Perspect Biol 8. https://doi.org/10.1101/cshperspect.a005918

  3. Ashcroft F, Gadsby D, Miller C (2009) Introduction. The blurred boundary between channels and transporters. Philos Trans R Soc Lond Ser B Biol Sci 364:145–147. https://doi.org/10.1098/rstb.2008.0245

    Article  Google Scholar 

  4. Gadsby DC (2009) Ion channels versus ion pumps: the principal difference, in principle. Nat Rev Mol Cell Biol 10:344–352. https://doi.org/10.1038/nrm2668

    Article  CAS  PubMed Central  Google Scholar 

  5. Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R (2014) DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci U S A 111:2367–2372. https://doi.org/10.1073/pnas.1316278111

    Article  CAS  PubMed Central  Google Scholar 

  6. Latchman DS (1990) Eukaryotic transcription factors. Biochem J 270:281–289. https://doi.org/10.1042/bj2700281

    Article  CAS  PubMed Central  Google Scholar 

  7. Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16:18–29. https://doi.org/10.1038/nrm3920

    Article  CAS  PubMed Central  Google Scholar 

  8. Uversky VN (2019) Intrinsically disordered proteins and their “mysterious” (meta)physics. Front Phys 7. https://doi.org/10.3389/fphy.2019.00010

  9. Ma B, Tsai C-J, Haliloğlu T, Nussinov R (2011) Dynamic allostery: linkers are not merely flexible. Structure 19:907–917. https://doi.org/10.1016/j.str.2011.06.002

    Article  CAS  PubMed Central  Google Scholar 

  10. Schwede T (2013) Protein modeling: what happened to the “protein structure gap”? Structure 21:1531–1540. https://doi.org/10.1016/j.str.2013.08.007

    Article  CAS  Google Scholar 

  11. Weinkam P, Pons J, Sali A (2012) Structure-based model of allostery predicts coupling between distant sites. Proc Natl Acad Sci U S A 109:4875–4880. https://doi.org/10.1073/pnas.1116274109

    Article  PubMed Central  Google Scholar 

  12. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30(Suppl 1):S162–S173. https://doi.org/10.1002/elps.200900140

    Article  Google Scholar 

  13. Sánchez R, Sali A (1998) Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc Natl Acad Sci U S A 95:13597–13602. https://doi.org/10.1073/pnas.95.23.13597

    Article  PubMed Central  Google Scholar 

  14. Jalily Hasani H, Barakat K (2017) Homology modeling: an overview of fundamentals and tools. Int Rev Model Simul (IREMOS) 10:129. https://doi.org/10.15866/iremos.v10i2.11412

    Article  Google Scholar 

  15. Bhagwat M, Aravind L (2007) PSI-BLAST tutorial. Methods Mol Biol 395:177–186. https://doi.org/10.1007/978-1-59745-514-5_10

    Article  CAS  PubMed Central  Google Scholar 

  16. Zhang Z, Schäffer AA, Miller W, Madden TL, Lipman DJ, Koonin EV, Altschul SF (1998) Protein sequence similarity searches using patterns as seeds. Nucleic Acids Res 26:3986–3990. https://doi.org/10.1093/nar/26.17.3986

    Article  CAS  PubMed Central  Google Scholar 

  17. Boratyn GM, Schäffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL (2012) Domain enhanced lookup time accelerated BLAST. Biol Direct 7:12. https://doi.org/10.1186/1745-6150-7-12

    Article  CAS  PubMed Central  Google Scholar 

  18. Stecher G, Tamura K, Kumar S (2020) Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol Biol Evol 37:1237–1239. https://doi.org/10.1093/molbev/msz312

    Article  CAS  PubMed Central  Google Scholar 

  19. Sievers F, Higgins DG (2018) Clustal Omega for making accurate alignments of many protein sequences. Protein Sci 27:135–145. https://doi.org/10.1002/pro.3290

    Article  CAS  Google Scholar 

  20. Peng J, Xu J (2009) Boosting protein threading accuracy. Res Comput Mol Biol 5541:31–45. https://doi.org/10.1007/978-3-642-02008-7_3

    Article  CAS  PubMed Central  Google Scholar 

  21. Zheng W, Wuyun Q, Li Y, Mortuza SM, Zhang C, Pearce R, Ruan J, Zhang Y (2019) Detecting distant-homology protein structures by aligning deep neural-network based contact maps. PLoS Comput Biol 15:e1007411. https://doi.org/10.1371/journal.pcbi.1007411

    Article  CAS  PubMed Central  Google Scholar 

  22. Peitsch MC (1997) Large scale protein modelling and model repository. Proc Int Conf Intell Syst Mol Biol 5:234–236

    CAS  Google Scholar 

  23. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815. https://doi.org/10.1006/jmbi.1993.1626

    Article  CAS  Google Scholar 

  24. Zheng W, Li Y, Zhang C, Pearce R, Mortuza SM, Zhang Y (2019) Deep-learning contact-map guided protein structure prediction in CASP13. Proteins 87:1149–1164. https://doi.org/10.1002/prot.25792

    Article  CAS  PubMed Central  Google Scholar 

  25. Wu S, Zhang Y (2008) MUSTER: improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins 72:547–556. https://doi.org/10.1002/prot.21945

    Article  CAS  PubMed Central  Google Scholar 

  26. Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9:1753–1773. https://doi.org/10.1110/ps.9.9.1753

    Article  CAS  PubMed Central  Google Scholar 

  27. Dunbrack RL, Karplus M (1993) Backbone-dependent rotamer library for proteins. Application to side-chain prediction. J Mol Biol 230:543–574. https://doi.org/10.1006/jmbi.1993.1170

    Article  CAS  Google Scholar 

  28. Christen M, Hünenberger PH, Bakowies D, Baron R, Bürgi R, Geerke DP, Heinz TN, Kastenholz MA, Kräutler V, Oostenbrink C, Peter C, Trzesniak D, van Gunsteren WF (2005) The GROMOS software for biomolecular simulation: GROMOS05. J Comput Chem 26:1719–1751. https://doi.org/10.1002/jcc.20303

    Article  CAS  Google Scholar 

  29. Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, Verma V, Keedy DA, Hintze BJ, Chen VB, Jain S, Lewis SM, Arendall WB, Snoeyink J, Adams PD, Lovell SC, Richardson JS, Richardson DC (2018) MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci 27:293–315. https://doi.org/10.1002/pro.3330

    Article  CAS  Google Scholar 

  30. Lee J, Wu S, Zhang Y (2009) Ab initio protein structure prediction. In: Rigden DJ (ed) From protein structure to function with bioinformatics. Springer Netherlands, Dordrecht, pp 3–25

    Chapter  Google Scholar 

  31. Xu D, Zhang Y (2013) Toward optimal fragment generations for ab initio protein structure assembly: Ab Initio Fragment Generation. Proteins Struct Funct Bioinform 81:229–239. https://doi.org/10.1002/prot.24179

    Article  CAS  Google Scholar 

  32. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Žídek A, Nelson AWR, Bridgland A, Penedones H, Petersen S, Simonyan K, Crossan S, Kohli P, Jones DT, Silver D, Kavukcuoglu K, Hassabis D (2020) Improved protein structure prediction using potentials from deep learning. Nature 577:706–710. https://doi.org/10.1038/s41586-019-1923-7

    Article  CAS  Google Scholar 

  33. Wang C, Liu Z, Chen Z, Huang X, Xu M, He T, Zhang Z (2020) The establishment of reference sequence for SARS-CoV-2 and variation analysis. J Med Virol 92:667–674. https://doi.org/10.1002/jmv.25762

    Article  CAS  PubMed Central  Google Scholar 

  34. de Wit E, van Doremalen N, Falzarano D, Munster VJ (2016) SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 14:523–534. https://doi.org/10.1038/nrmicro.2016.81

    Article  CAS  PubMed Central  Google Scholar 

  35. Huang C, Lokugamage KG, Rozovics JM, Narayanan K, Semler BL, Makino S (2011) SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage. PLoS Pathog 7:e1002433. https://doi.org/10.1371/journal.ppat.1002433

    Article  CAS  PubMed Central  Google Scholar 

  36. Schubert K, Karousis ED, Jomaa A, Scaiola A, Echeverria B, Gurzeler L-A, Leibundgut M, Thiel V, Mühlemann O, Ban N (2020) SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat Struct Mol Biol 27:959–966. https://doi.org/10.1038/s41594-020-0511-8

    Article  CAS  Google Scholar 

  37. Cornillez-Ty CT, Liao L, Yates JR, Kuhn P, Buchmeier MJ (2009) Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. J Virol 83:10314–10318. https://doi.org/10.1128/JVI.00842-09

    Article  CAS  PubMed Central  Google Scholar 

  38. Angeletti S, Benvenuto D, Bianchi M, Giovanetti M, Pascarella S, Ciccozzi M (2020) COVID-2019: the role of the nsp2 and nsp3 in its pathogenesis. J Med Virol 92:584–588. https://doi.org/10.1002/jmv.25719

    Article  CAS  PubMed Central  Google Scholar 

  39. Lei J, Kusov Y, Hilgenfeld R (2018) Nsp3 of coronaviruses: structures and functions of a large multi-domain protein. Antivir Res 149:58–74. https://doi.org/10.1016/j.antiviral.2017.11.001

    Article  CAS  Google Scholar 

  40. Sakai Y, Kawachi K, Terada Y, Omori H, Matsuura Y, Kamitani W (2017) Two-amino acids change in the nsp4 of SARS coronavirus abolishes viral replication. Virology 510:165–174. https://doi.org/10.1016/j.virol.2017.07.019

    Article  CAS  Google Scholar 

  41. Tomar S, Johnston ML, St John SE, Osswald HL, Nyalapatla PR, Paul LN, Ghosh AK, Denison MR, Mesecar AD (2015) Ligand-induced dimerization of Middle East Respiratory Syndrome (MERS) coronavirus nsp5 protease (3CLpro): implications for nsp5 regulation and the development of antivirals. J Biol Chem 290:19403–19422. https://doi.org/10.1074/jbc.M115.651463

    Article  CAS  PubMed Central  Google Scholar 

  42. Roe MK, Junod NA, Young AR, Beachboard DC, Stobart CC (2021) Targeting novel structural and functional features of coronavirus protease nsp5 (3CLpro, Mpro) in the age of COVID-19. J Gen Virol 102. https://doi.org/10.1099/jgv.0.001558

  43. te Velthuis AJW, van den Worm SHE, Snijder EJ (2012) The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res 40:1737–1747. https://doi.org/10.1093/nar/gkr893

    Article  CAS  Google Scholar 

  44. Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zhang L, Ge J, Zheng L, Zhang Y, Wang H, Zhu Y, Zhu C, Hu T, Hua T, Zhang B, Yang X, Li J, Yang H, Liu Z, Xu W, Guddat LW, Wang Q, Lou Z, Rao Z (2020) Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368:779–782. https://doi.org/10.1126/science.abb7498

    Article  CAS  PubMed Central  Google Scholar 

  45. Ma Y, Wu L, Shaw N, Gao Y, Wang J, Sun Y, Lou Z, Yan L, Zhang R, Rao Z (2015) Structural basis and functional analysis of the SARS coronavirus nsp14–nsp10 complex. Proc Natl Acad Sci 112:9436–9441. https://doi.org/10.1073/pnas.1508686112

    Article  CAS  PubMed Central  Google Scholar 

  46. Wang Y, Sun Y, Wu A, Xu S, Pan R, Zeng C, Jin X, Ge X, Shi Z, Ahola T, Chen Y, Guo D (2015) Coronavirus nsp10/nsp16 methyltransferase can be targeted by nsp10-derived peptide in vitro and in vivo to reduce replication and pathogenesis. J Virol 89:8416–8427. https://doi.org/10.1128/JVI.00948-15

    Article  CAS  PubMed Central  Google Scholar 

  47. Subissi L, Posthuma CC, Collet A, Zevenhoven-Dobbe JC, Gorbalenya AE, Decroly E, Snijder EJ, Canard B, Imbert I (2014) One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc Natl Acad Sci 111:E3900–E3909. https://doi.org/10.1073/pnas.1323705111

    Article  CAS  PubMed Central  Google Scholar 

  48. Peng Q, Peng R, Yuan B, Zhao J, Wang M, Wang X, Wang Q, Sun Y, Fan Z, Qi J, Gao GF, Shi Y (2020) Structural and biochemical characterization of the nsp12-nsp7-nsp8 core polymerase complex from SARS-CoV-2. Cell Rep 31:107774. https://doi.org/10.1016/j.celrep.2020.107774

    Article  CAS  PubMed Central  Google Scholar 

  49. Jang K-J, Jeong S, Kang DY, Sp N, Yang YM, Kim D-E (2020) A high ATP concentration enhances the cooperative translocation of the SARS coronavirus helicase nsP13 in the unwinding of duplex RNA. Sci Rep 10:4481. https://doi.org/10.1038/s41598-020-61432-1

    Article  CAS  PubMed Central  Google Scholar 

  50. Jia Z, Yan L, Ren Z, Wu L, Wang J, Guo J, Zheng L, Ming Z, Zhang L, Lou Z, Rao Z (2019) Delicate structural coordination of the Severe Acute Respiratory Syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Res 47:6538–6550. https://doi.org/10.1093/nar/gkz409

    Article  CAS  PubMed Central  Google Scholar 

  51. Ivanov KA, Thiel V, Dobbe JC, van der Meer Y, Snijder EJ, Ziebuhr J (2004) Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol 78:5619–5632. https://doi.org/10.1128/JVI.78.11.5619-5632.2004

    Article  CAS  PubMed Central  Google Scholar 

  52. Shu T, Huang M, Wu D, Ren Y, Zhang X, Han Y, Mu J, Wang R, Qiu Y, Zhang D-Y, Zhou X (2020) SARS-Coronavirus-2 Nsp13 possesses NTPase and RNA helicase activities that can be inhibited by bismuth salts. Virol Sin 35:321–329. https://doi.org/10.1007/s12250-020-00242-1

    Article  CAS  PubMed Central  Google Scholar 

  53. Case JB, Ashbrook AW, Dermody TS, Denison MR (2016) Mutagenesis of S -adenosyl-l-methionine-binding residues in coronavirus nsp14 N7-methyltransferase demonstrates differing requirements for genome translation and resistance to innate immunity. J Virol 90:7248–7256. https://doi.org/10.1128/JVI.00542-16

    Article  CAS  PubMed Central  Google Scholar 

  54. Ogando NS, Zevenhoven-Dobbe JC, van der Meer Y, Bredenbeek PJ, Posthuma CC, Snijder EJ (2020) The enzymatic activity of the nsp14 exoribonuclease is critical for replication of MERS-CoV and SARS-CoV-2. J Virol 94. https://doi.org/10.1128/JVI.01246-20

  55. Hong S, Seo SH, Woo S-J, Kwon Y, Song M, Ha N-C (2021) Epigallocatechin gallate inhibits the uridylate-specific endoribonuclease Nsp15 and efficiently neutralizes the SARS-CoV-2 strain. J Agric Food Chem 69:5948–5954. https://doi.org/10.1021/acs.jafc.1c02050

    Article  CAS  PubMed Central  Google Scholar 

  56. Hackbart M, Deng X, Baker SC (2020) Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. Proc Natl Acad Sci 117:8094–8103. https://doi.org/10.1073/pnas.1921485117

    Article  CAS  PubMed Central  Google Scholar 

  57. Decroly E, Debarnot C, Ferron F, Bouvet M, Coutard B, Imbert I, Gluais L, Papageorgiou N, Sharff A, Bricogne G, Ortiz-Lombardia M, Lescar J, Canard B (2011) Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2’-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog 7:e1002059. https://doi.org/10.1371/journal.ppat.1002059

    Article  CAS  PubMed Central  Google Scholar 

  58. Vithani N, Ward MD, Zimmerman MI, Novak B, Borowsky JH, Singh S, Bowman GR (2021) SARS-CoV-2 Nsp16 activation mechanism and a cryptic pocket with pan-coronavirus antiviral potential. Biophys J:S000634952100254X. https://doi.org/10.1016/j.bpj.2021.03.024

  59. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581:215–220. https://doi.org/10.1038/s41586-020-2180-5

    Article  CAS  Google Scholar 

  60. Daly JL, Simonetti B, Klein K, Chen K-E, Williamson MK, Antón-Plágaro C, Shoemark DK, Simón-Gracia L, Bauer M, Hollandi R, Greber UF, Horvath P, Sessions RB, Helenius A, Hiscox JA, Teesalu T, Matthews DA, Davidson AD, Collins BM, Cullen PJ, Yamauchi Y (2020) Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science:eabd3072. https://doi.org/10.1126/science.abd3072

  61. Teesalu T, Sugahara KN, Kotamraju VR, Ruoslahti E (2009) C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc Natl Acad Sci 106:16157–16162. https://doi.org/10.1073/pnas.0908201106

    Article  PubMed Central  Google Scholar 

  62. Guo H-F, Vander Kooi CW (2015) Neuropilin functions as an essential cell surface receptor. J Biol Chem 290:29120–29126. https://doi.org/10.1074/jbc.R115.687327

    Article  CAS  PubMed Central  Google Scholar 

  63. Plein A, Fantin A, Ruhrberg C (2014) Neuropilin regulation of angiogenesis, arteriogenesis, and vascular permeability. Microcirculation 21:315–323. https://doi.org/10.1111/micc.12124

    Article  CAS  PubMed Central  Google Scholar 

  64. Nieto-Torres JL, DeDiego ML, Verdiá-Báguena C, Jimenez-Guardeño JM, Regla-Nava JA, Fernandez-Delgado R, Castaño-Rodriguez C, Alcaraz A, Torres J, Aguilella VM, Enjuanes L (2014) Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog 10:e1004077. https://doi.org/10.1371/journal.ppat.1004077

    Article  CAS  PubMed Central  Google Scholar 

  65. Verdiá-Báguena C, Nieto-Torres JL, Alcaraz A, DeDiego ML, Torres J, Aguilella VM, Enjuanes L (2012) Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids. Virology 432:485–494. https://doi.org/10.1016/j.virol.2012.07.005

    Article  CAS  Google Scholar 

  66. Nieva JL, Madan V, Carrasco L (2012) Viroporins: structure and biological functions. Nat Rev Microbiol 10:563–574. https://doi.org/10.1038/nrmicro2820

    Article  CAS  PubMed Central  Google Scholar 

  67. Sarkar M, Saha S (2020) Structural insight into the role of novel SARS-CoV-2 E protein: a potential target for vaccine development and other therapeutic strategies. PLoS One 15:e0237300. https://doi.org/10.1371/journal.pone.0237300

    Article  CAS  PubMed Central  Google Scholar 

  68. Escors D, Ortego J, Laude H, Enjuanes L (2001) The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability. J Virol 75:1312–1324. https://doi.org/10.1128/JVI.75.3.1312-1324.2001

    Article  CAS  PubMed Central  Google Scholar 

  69. Kuo L, Masters PS (2003) The small envelope protein E is not essential for murine coronavirus replication. J Virol 77:4597–4608. https://doi.org/10.1128/jvi.77.8.4597-4608.2003

    Article  CAS  PubMed Central  Google Scholar 

  70. Neuman BW, Joseph JS, Saikatendu KS, Serrano P, Chatterjee A, Johnson MA, Liao L, Klaus JP, Yates JR, Wüthrich K, Stevens RC, Buchmeier MJ, Kuhn P (2008) Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3. J Virol 82:5279–5294. https://doi.org/10.1128/JVI.02631-07

    Article  CAS  PubMed Central  Google Scholar 

  71. Tsoi H, Li L, Chen ZS, Lau K-F, Tsui SKW, Chan HYE (2014) The SARS-coronavirus membrane protein induces apoptosis via interfering with PDK1-PKB/Akt signalling. Biochem J 464:439–447. https://doi.org/10.1042/BJ20131461

    Article  CAS  Google Scholar 

  72. Zheng Y, Zhuang M-W, Han L, Zhang J, Nan M-L, Zhan P, Kang D, Liu X, Gao C, Wang P-H (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling. Signal Transduct Target Ther 5:299. https://doi.org/10.1038/s41392-020-00438-7

    Article  CAS  PubMed Central  Google Scholar 

  73. Siu YL, Teoh KT, Lo J, Chan CM, Kien F, Escriou N, Tsao SW, Nicholls JM, Altmeyer R, Peiris JSM, Bruzzone R, Nal B (2008) The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J Virol 82:11318–11330. https://doi.org/10.1128/JVI.01052-08

    Article  CAS  PubMed Central  Google Scholar 

  74. Mu J, Xu J, Zhang L, Shu T, Wu D, Huang M, Ren Y, Li X, Geng Q, Xu Y, Qiu Y, Zhou X (2020) SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells. Sci China Life Sci 63:1–4. https://doi.org/10.1007/s11427-020-1692-1

    Article  CAS  Google Scholar 

  75. Surjit M, Liu B, Chow VTK, Lal SK (2006) The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. J Biol Chem 281:10669–10681. https://doi.org/10.1074/jbc.M509233200

    Article  CAS  Google Scholar 

  76. Castaño-Rodriguez C, Honrubia JM, Gutiérrez-Álvarez J, DeDiego ML, Nieto-Torres JL, Jimenez-Guardeño JM, Regla-Nava JA, Fernandez-Delgado R, Verdia-Báguena C, Queralt-Martín M, Kochan G, Perlman S, Aguilella VM, Sola I, Enjuanes L (2018) Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis. mBio 9. https://doi.org/10.1128/mBio.02325-17

  77. Siu K-L, Yuen K-S, Castaño-Rodriguez C, Ye Z-W, Yeung M-L, Fung S-Y, Yuan S, Chan C-P, Yuen K-Y, Enjuanes L, Jin D-Y (2019) Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J 33:8865–8877. https://doi.org/10.1096/fj.201802418R

    Article  CAS  PubMed Central  Google Scholar 

  78. Ren Y, Shu T, Wu D, Mu J, Wang C, Huang M, Han Y, Zhang X-Y, Zhou W, Qiu Y, Zhou X (2020) The ORF3a protein of SARS-CoV-2 induces apoptosis in cells. Cell Mol Immunol 17:881–883. https://doi.org/10.1038/s41423-020-0485-9

    Article  CAS  PubMed Central  Google Scholar 

  79. Minakshi R, Padhan K, Rehman S, Hassan MDI, Ahmad F (2014) The SARS Coronavirus 3a protein binds calcium in its cytoplasmic domain. Virus Res 191:180–183. https://doi.org/10.1016/j.virusres.2014.08.001

    Article  CAS  PubMed Central  Google Scholar 

  80. Kumar P, Gunalan V, Liu B, Chow VTK, Druce J, Birch C, Catton M, Fielding BC, Tan Y-J, Lal SK (2007) The nonstructural protein 8 (nsp8) of the SARS coronavirus interacts with its ORF6 accessory protein. Virology 366:293–303. https://doi.org/10.1016/j.virol.2007.04.029

    Article  CAS  Google Scholar 

  81. Hussain S, Gallagher T (2010) SARS-coronavirus protein 6 conformations required to impede protein import into the nucleus. Virus Res 153:299–304. https://doi.org/10.1016/j.virusres.2010.08.017

    Article  CAS  PubMed Central  Google Scholar 

  82. Miorin L, Kehrer T, Sanchez-Aparicio MT, Zhang K, Cohen P, Patel RS, Cupic A, Makio T, Mei M, Moreno E, Danziger O, White KM, Rathnasinghe R, Uccellini M, Gao S, Aydillo T, Mena I, Yin X, Martin-Sancho L, Krogan NJ, Chanda SK, Schotsaert M, Wozniak RW, Ren Y, Rosenberg BR, Fontoura BMA, García-Sastre A (2020) SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc Natl Acad Sci U S A 117:28344–28354. https://doi.org/10.1073/pnas.2016650117

    Article  CAS  PubMed Central  Google Scholar 

  83. Li J-Y, Liao C-H, Wang Q, Tan Y-J, Luo R, Qiu Y, Ge X-Y (2020) The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Res 286:198074. https://doi.org/10.1016/j.virusres.2020.198074

    Article  CAS  PubMed Central  Google Scholar 

  84. Nelson CA, Pekosz A, Lee CA, Diamond MS, Fremont DH (2005) Structure and intracellular targeting of the SARS-coronavirus Orf7a accessory protein. Structure 13:75–85. https://doi.org/10.1016/j.str.2004.10.010

    Article  CAS  PubMed Central  Google Scholar 

  85. Taylor JK, Coleman CM, Postel S, Sisk JM, Bernbaum JG, Venkataraman T, Sundberg EJ, Frieman MB (2015) Severe acute respiratory syndrome coronavirus ORF7a inhibits bone marrow stromal antigen 2 virion tethering through a novel mechanism of glycosylation interference. J Virol 89:11820–11833. https://doi.org/10.1128/JVI.02274-15

    Article  CAS  PubMed Central  Google Scholar 

  86. Cao Z, Xia H, Rajsbaum R, Xia X, Wang H, Shi P-Y (2021) Ubiquitination of SARS-CoV-2 ORF7a promotes antagonism of interferon response. Cell Mol Immunol 18:746–748. https://doi.org/10.1038/s41423-020-00603-6

    Article  CAS  Google Scholar 

  87. Schaecher SR, Mackenzie JM, Pekosz A (2007) The ORF7b protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is expressed in virus-infected cells and incorporated into SARS-CoV particles. J Virol 81:718–731. https://doi.org/10.1128/JVI.01691-06

    Article  CAS  Google Scholar 

  88. Schaecher SR, Diamond MS, Pekosz A (2008) The transmembrane domain of the severe acute respiratory syndrome coronavirus ORF7b protein is necessary and sufficient for its retention in the Golgi complex. J Virol 82:9477–9491. https://doi.org/10.1128/JVI.00784-08

    Article  CAS  PubMed Central  Google Scholar 

  89. Le TM, Wong HH, Tay FPL, Fang S, Keng C-T, Tan YJ, Liu DX (2007) Expression, post-translational modification and biochemical characterization of proteins encoded by subgenomic mRNA8 of the severe acute respiratory syndrome coronavirus. FEBS J 274:4211–4222. https://doi.org/10.1111/j.1742-4658.2007.05947.x

    Article  CAS  PubMed Central  Google Scholar 

  90. Keng C-T, Choi Y-W, Welkers MRA, Chan DZL, Shen S, Gee Lim S, Hong W, Tan Y-J (2006) The human severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein is distinct from its counterpart in animal SARS-CoV and down-regulates the expression of the envelope protein in infected cells. Virology 354:132–142. https://doi.org/10.1016/j.virol.2006.06.026

    Article  CAS  Google Scholar 

  91. Wong HH, Fung TS, Fang S, Huang M, Le MT, Liu DX (2018) Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3. Virology 515:165–175. https://doi.org/10.1016/j.virol.2017.12.028

    Article  CAS  Google Scholar 

  92. Zhang Y, Chen Y, Li Y, Huang F, Luo B, Yuan Y, Xia B, Ma X, Yang T, Yu F, Liu J, Liu B, Song Z, Chen J, Yan S, Wu L, Pan T, Zhang X, Li R, Huang W, He X, Xiao F, Zhang J, Zhang H (2021) The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Ι. Proc Natl Acad Sci U S A 118:e2024202118. https://doi.org/10.1073/pnas.2024202118

    Article  CAS  PubMed Central  Google Scholar 

  93. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O’Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Huettenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A, Miorin L, Moreno E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Lyu J, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang X-P, Liu Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, Shengjuler D, Fletcher SJ, O’Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu D, Wang H-Y, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, Jura N, von Zastrow M, Verdin E, Ashworth A, Schwartz O, d’Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS, Floor SN, Fraser JS, Gross JD, Sali A, Roth BL, Ruggero D, Taunton J, Kortemme T, Beltrao P, Vignuzzi M, García-Sastre A, Shokat KM, Shoichet BK, Krogan NJ (2020) A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. https://doi.org/10.1038/s41586-020-2286-9

  94. Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33:2302–2309. https://doi.org/10.1093/nar/gki524

    Article  CAS  PubMed Central  Google Scholar 

  95. Mukherjee S, Zhang Y (2009) MM-align: a quick algorithm for aligning multiple-chain protein complex structures using iterative dynamic programming. Nucleic Acids Res 37:e83. https://doi.org/10.1093/nar/gkp318

    Article  CAS  PubMed Central  Google Scholar 

  96. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F (2020) Structural basis of receptor recognition by SARS-CoV-2. Nature 581:221–224. https://doi.org/10.1038/s41586-020-2179-y

    Article  CAS  PubMed Central  Google Scholar 

  97. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181:281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058

    Article  CAS  PubMed Central  Google Scholar 

  98. Kang S, Yang M, Hong Z, Zhang L, Huang Z, Chen X, He S, Zhou Z, Zhou Z, Chen Q, Yan Y, Zhang C, Shan H, Chen S (2020) Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm Sin B 10:1228–1238. https://doi.org/10.1016/j.apsb.2020.04.009

    Article  CAS  PubMed Central  Google Scholar 

  99. Surjit M, Lal SK (2010) The nucleocapsid protein of the SARS coronavirus: structure, function and therapeutic potential. In: Lal SK (ed) Molecular biology of the SARS-coronavirus. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 129–151

    Chapter  Google Scholar 

  100. Schoeman D, Fielding BC (2019) Coronavirus envelope protein: current knowledge. Virol J 16:69. https://doi.org/10.1186/s12985-019-1182-0

    Article  CAS  PubMed Central  Google Scholar 

  101. Mukherjee S, Bhattacharyya D, Bhunia A (2020) Host-membrane interacting interface of the SARS coronavirus envelope protein: immense functional potential of C-terminal domain. Biophys Chem 266:106452. https://doi.org/10.1016/j.bpc.2020.106452

    Article  CAS  PubMed Central  Google Scholar 

  102. Bianchi M, Benvenuto D, Giovanetti M, Angeletti S, Ciccozzi M, Pascarella S (2020) Sars-CoV-2 envelope and membrane proteins: structural differences linked to virus characteristics? Biomed Res Int 2020:1–6. https://doi.org/10.1155/2020/4389089

    Article  CAS  Google Scholar 

  103. Voss D, Pfefferle S, Drosten C, Stevermann L, Traggiai E, Lanzavecchia A, Becker S (2009) Studies on membrane topology, N-glycosylation and functionality of SARS-CoV membrane protein. Virol J 6:79. https://doi.org/10.1186/1743-422X-6-79

    Article  CAS  PubMed Central  Google Scholar 

  104. Holm L, Ouzounis C, Sander C, Tuparev G, Vriend G (1992) A database of protein structure families with common folding motifs. Protein Sci 1:1691–1698. https://doi.org/10.1002/pro.5560011217

    Article  CAS  PubMed Central  Google Scholar 

  105. Horton P, Nakai K (1997) Better prediction of protein cellular localization sites with the k nearest neighbors classifier. Proc Int Conf Intell Syst Mol Biol 5:147–152

    CAS  Google Scholar 

  106. Feyfant E, Sali A, Fiser A (2007) Modeling mutations in protein structures. Protein Sci 16:2030–2041. https://doi.org/10.1110/ps.072855507

    Article  CAS  PubMed Central  Google Scholar 

  107. Kopp J, Bordoli L, Battey JND, Kiefer F, Schwede T (2007) Assessment of CASP7 predictions for template-based modeling targets. Proteins 69(Suppl 8):38–56. https://doi.org/10.1002/prot.21753

    Article  CAS  Google Scholar 

  108. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q (2020) Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367:1444–1448. https://doi.org/10.1126/science.abb2762

    Article  PubMed Central  Google Scholar 

  109. Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, van der Meer F, Kallio K, Kaya T, Anastasina M, Smura T, Levanov L, Szirovicza L, Tobi A, Kallio-Kokko H, Österlund P, Joensuu M, Meunier FA, Butcher SJ, Winkler MS, Mollenhauer B, Helenius A, Gokce O, Teesalu T, Hepojoki J, Vapalahti O, Stadelmann C, Balistreri G, Simons M (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370:856–860. https://doi.org/10.1126/science.abd2985

    Article  CAS  PubMed Central  Google Scholar 

  110. Surya W, Li Y, Torres J (2018) Structural model of the SARS coronavirus E channel in LMPG micelles. Biochim Biophys Acta Biomembr 1860:1309–1317. https://doi.org/10.1016/j.bbamem.2018.02.017

    Article  CAS  PubMed Central  Google Scholar 

  111. George RA, Spriggs RV, Bartlett GJ, Gutteridge A, MacArthur MW, Porter CT, Al-Lazikani B, Thornton JM, Swindells MB (2005) Effective function annotation through catalytic residue conservation. Proc Natl Acad Sci 102:12299–12304. https://doi.org/10.1073/pnas.0504833102

    Article  CAS  PubMed Central  Google Scholar 

  112. Sankararaman S, Sha F, Kirsch JF, Jordan MI, Sjölander K (2010) Active site prediction using evolutionary and structural information. Bioinformatics 26:617–624. https://doi.org/10.1093/bioinformatics/btq008

    Article  CAS  PubMed Central  Google Scholar 

  113. Bate P, Warwicker J (2004) Enzyme/non-enzyme discrimination and prediction of enzyme active site location using charge-based methods. J Mol Biol 340:263–276. https://doi.org/10.1016/j.jmb.2004.04.070

    Article  CAS  Google Scholar 

  114. Chakrabarti R, Klibanov AM, Friesner RA (2005) Computational prediction of native protein ligand-binding and enzyme active site sequences. Proc Natl Acad Sci 102:10153–10158. https://doi.org/10.1073/pnas.0504023102

    Article  CAS  PubMed Central  Google Scholar 

  115. Yamamoto D, Takai S, Miyazaki M (2007) Prediction of interaction mode between a typical ACE inhibitor and MMP-9 active site. Biochem Biophys Res Commun 354:981–984. https://doi.org/10.1016/j.bbrc.2007.01.088

    Article  CAS  Google Scholar 

  116. Hu J, Li Y, Zhang Y, Yu D-J (2018) ATPbind: accurate protein–ATP binding site prediction by combining sequence-profiling and structure-based comparisons. J Chem Inf Model 58:501–510. https://doi.org/10.1021/acs.jcim.7b00397

    Article  CAS  PubMed Central  Google Scholar 

  117. Lin C-W, Tsai F-J, Wan L, Lai C-C, Lin K-H, Hsieh T-H, Shiu S-Y, Li J-Y (2005) Binding interaction of SARS coronavirus 3CL(pro) protease with vacuolar-H+ ATPase G1 subunit. FEBS Lett 579:6089–6094. https://doi.org/10.1016/j.febslet.2005.09.075

    Article  CAS  PubMed Central  Google Scholar 

  118. Meng X-Y, Zhang H-X, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7:146–157. https://doi.org/10.2174/157340911795677602

    Article  CAS  PubMed Central  Google Scholar 

  119. Brint AT, Willett P (1987) Algorithms for the identification of three-dimensional maximal common substructures. J Chem Inf Model 27:152–158. https://doi.org/10.1021/ci00056a002

    Article  CAS  Google Scholar 

  120. Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489. https://doi.org/10.1006/jmbi.1996.0477

    Article  CAS  Google Scholar 

  121. Miranker A, Karplus M (1991) Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins 11:29–34. https://doi.org/10.1002/prot.340110104

    Article  CAS  Google Scholar 

  122. Böhm HJ (1992) LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads. J Comput Aided Mol Des 6:593–606. https://doi.org/10.1007/BF00126217

    Article  Google Scholar 

  123. Goodsell DS, Lauble H, Stout CD, Olson AJ (1993) Automated docking in crystallography: analysis of the substrates of aconitase. Proteins 17:1–10. https://doi.org/10.1002/prot.340170104

    Article  CAS  Google Scholar 

  124. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784. https://doi.org/10.1021/ja00315a051

    Article  CAS  Google Scholar 

  125. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197. https://doi.org/10.1021/ja00124a002

    Article  CAS  Google Scholar 

  126. Böhm HJ (1998) Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs. J Comput Aided Mol Des 12:309–323. https://doi.org/10.1023/a:1007999920146

    Article  Google Scholar 

  127. Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DB, Fogel LJ, Freer ST (1995) Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. Chem Biol 2:317–324. https://doi.org/10.1016/1074-5521(95)90050-0

    Article  CAS  Google Scholar 

  128. Muegge I, Martin YC (1999) A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J Med Chem 42:791–804. https://doi.org/10.1021/jm980536j

    Article  CAS  Google Scholar 

  129. Ishchenko AV, Shakhnovich EI (2002) SMall Molecule Growth 2001 (SMoG2001): an improved knowledge-based scoring function for protein-ligand interactions. J Med Chem 45:2770–2780. https://doi.org/10.1021/jm0105833

    Article  CAS  Google Scholar 

  130. Charifson PS, Corkery JJ, Murcko MA, Walters WP (1999) Consensus scoring: a method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J Med Chem 42:5100–5109. https://doi.org/10.1021/jm990352k

    Article  CAS  Google Scholar 

  131. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed Central  Google Scholar 

  132. Kirchdoerfer RN, Ward AB (2019) Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat Commun 10:2342. https://doi.org/10.1038/s41467-019-10280-3

    Article  CAS  PubMed Central  Google Scholar 

  133. Konkolova E, Klima M, Nencka R, Boura E (2020) Structural analysis of the putative SARS-CoV-2 primase complex. J Struct Biol 211:107548. https://doi.org/10.1016/j.jsb.2020.107548

    Article  CAS  PubMed Central  Google Scholar 

  134. Yin W, Mao C, Luan X, Shen D-D, Shen Q, Su H, Wang X, Zhou F, Zhao W, Gao M, Chang S, Xie Y-C, Tian G, Jiang H-W, Tao S-C, Shen J, Jiang Y, Jiang H, Xu Y, Zhang S, Zhang Y, Xu HE (2020) Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368:1499–1504. https://doi.org/10.1126/science.abc1560

    Article  CAS  PubMed Central  Google Scholar 

  135. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385. https://doi.org/10.1093/nar/gkg520

    Article  CAS  PubMed Central  Google Scholar 

  136. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinform 54. https://doi.org/10.1002/cpbi.3

  137. Eswar N (2003) Tools for comparative protein structure modeling and analysis. Nucleic Acids Res 31:3375–3380. https://doi.org/10.1093/nar/gkg543

    Article  CAS  PubMed Central  Google Scholar 

  138. Wang S, Li W, Liu S, Xu J (2016) RaptorX-Property: a web server for protein structure property prediction. Nucleic Acids Res 44:W430–W435. https://doi.org/10.1093/nar/gkw306

    Article  CAS  PubMed Central  Google Scholar 

  139. Bennett-Lovsey RM, Herbert AD, Sternberg MJE, Kelley LA (2008) Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins Struct Funct Bioinform 70:611–625. https://doi.org/10.1002/prot.21688

    Article  CAS  Google Scholar 

  140. Bazzoli A, Tettamanzi AGB, Zhang Y (2011) Computational protein design and large-scale assessment by I-TASSER structure assembly simulations. J Mol Biol 407:764–776. https://doi.org/10.1016/j.jmb.2011.02.017

    Article  CAS  PubMed Central  Google Scholar 

  141. Khare SD, Whitehead TA (2015) Introduction to the Rosetta special collection. PLoS One 10:e0144326. https://doi.org/10.1371/journal.pone.0144326

    Article  CAS  PubMed Central  Google Scholar 

  142. Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D (2020) Improved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci 117:1496–1503. https://doi.org/10.1073/pnas.1914677117

    Article  CAS  PubMed Central  Google Scholar 

  143. Ko J, Park H, Heo L, Seok C (2012) GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res 40:W294–W297. https://doi.org/10.1093/nar/gks493

    Article  CAS  PubMed Central  Google Scholar 

  144. Zheng W, Zhang C, Wuyun Q, Pearce R, Li Y, Zhang Y (2019) LOMETS2: improved meta-threading server for fold-recognition and structure-based function annotation for distant-homology proteins. Nucleic Acids Res 47:W429–W436. https://doi.org/10.1093/nar/gkz384

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Victor Hannothiaux, Paul Etheimer, Leo Janin and Sophie Ameloot for proof-reading the manuscript for language and technical details. This work was supported by MedInsights SAS (SIRET: 91842274200018; SIREN: 918422742; www.medinsights.fr), Paris. We did not receive any funding for writing this book chapter from any sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soham Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sarkar, M., Saha, S. (2023). Modeling of SARS-CoV-2 Virus Proteins: Implications on Its Proteome. In: Filipek, S. (eds) Homology Modeling. Methods in Molecular Biology, vol 2627. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2974-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2974-1_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2973-4

  • Online ISBN: 978-1-0716-2974-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics