Skip to main content

Sequoia: A Framework for Visual Analysis of RNA Modifications from Direct RNA Sequencing Data

Part of the Methods in Molecular Biology book series (MIMB,volume 2624)

Abstract

Oxford Nanopore-based long-read direct RNA sequencing protocols are being increasingly used to study the dynamics of RNA metabolic processes due to improvements in read lengths, increased throughput, decreasing cost, ease of library preparation, and convenience. Long-read sequencing enables single-molecule-based detection of posttranscriptional changes, promising novel insights into the functional roles of RNA. However, fulfilling this potential will necessitate the development of new tools for analyzing and exploring this type of data. Although there are tools that allow users to analyze signal information, such as comparing raw signal traces to a nucleotide sequence, they don’t facilitate studying each individual signal instance in each read or perform analysis of signal clusters based on signal similarity. Therefore, we present Sequoia, a visual analytics application that allows users to interactively analyze signals originating from nanopore sequencers and can readily be extended to both RNA and DNA sequencing datasets. Sequoia combines a Python-based backend with a multi-view graphical interface that allows users to ingest raw nanopore sequencing data in Fast5 format, cluster sequences based on electric-current similarities, and drill-down onto signals to find attributes of interest. In this tutorial, we illustrate each individual step involved in running Sequoia and in the process dissect input data characteristics. We show how to generate Nanopore sequencing-based visualizations by leveraging dimensionality reduction and parameter tuning to separate modified RNA sequences from their unmodified counterparts. Sequoia’s interactive features enhance nanopore-based computational methodologies. Sequoia enables users to construct rationales and hypotheses and develop insights about the dynamic nature of RNA from the visual analysis. Sequoia is available at https://github.com/dnonatar/Sequoia.

Key words

  • RNA modifications
  • Epitranscriptome
  • Single-molecule sequencing
  • Nanopore signal analysis
  • Visual infrastructure

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-2962-8_9
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-2962-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Roundtree IA et al (2017) Dynamic RNA modifications in gene expression regulation. Cell 169(7):1187–1200

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gokmen-Polar Y et al (2015) Prognostic impact of HOTAIR expression is restricted to ER-negative breast cancers. Sci Rep 5:8765

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  3. Neelamraju Y, Hashemikhabir S, Janga SC (2015) The human RBPome: from genes and proteins to human disease. J Proteomics 127(Pt A):61–70

    CrossRef  CAS  PubMed  Google Scholar 

  4. Grosjean H (2015) RNA modification: the Golden Period 1995–2015. RNA 21(4):625–626

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  5. Watson M et al (2015) poRe: an R package for the visualization and analysis of nanopore sequencing data. Bioinformatics 31(1):114–115

    CrossRef  CAS  PubMed  Google Scholar 

  6. Loman NJ, Quinlan AR (2014) Poretools: a toolkit for analyzing nanopore sequence data. Bioinformatics 30(23):3399–3401

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tarraga J et al (2016) HPG pore: an efficient and scalable framework for nanopore sequencing data. BMC Bioinformatics 17:107

    CrossRef  PubMed  PubMed Central  Google Scholar 

  8. De Coster W et al (2018) NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34(15):2666–2669

    CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Shabardina V et al (2019) NanoPipe-a web server for nanopore MinION sequencing data analysis. Gigascience 8(2)

    Google Scholar 

  10. Bolognini D et al (2019) NanoR: A user-friendly R package to analyze and compare nanopore sequencing data. PLoS One 14(5):e0216471

    CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Ferguson JM, Smith MA (2019) SquiggleKit: a toolkit for manipulating nanopore signal data. Bioinformatics 35:5372

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koonchanok R et al (2021) Sequoia: an interactive visual analytics platform for interpretation and feature extraction from nanopore sequencing datasets. BMC Genomics 22(1):513

    CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Loman NJ, Quick J, Simpson JT (2015) A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 12(8):733–735

    CrossRef  CAS  PubMed  Google Scholar 

  14. Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34(18):3094–3100

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu F et al (2021) Evaluation of nanopore sequencing technology to identify Salmonella enterica Choleraesuis var. Kunzendorf and Orion var. 15(+), 34(). Int J Food Microbiol 346:109167

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khairi Reda or Sarath Chandra Janga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Koonchanok, R., Daulatabad, S.V., Reda, K., Janga, S.C. (2023). Sequoia: A Framework for Visual Analysis of RNA Modifications from Direct RNA Sequencing Data. In: Oliveira, P.H. (eds) Computational Epigenomics and Epitranscriptomics. Methods in Molecular Biology, vol 2624. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2962-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2962-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2961-1

  • Online ISBN: 978-1-0716-2962-8

  • eBook Packages: Springer Protocols