Skip to main content

High Pressure Homogenization for Inclusion Body Isolation

  • Protocol
  • First Online:
Inclusion Bodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2617))

  • 694 Accesses

Abstract

High pressure homogenization (HPH) is a commonly used method for cell lysis of Escherichia coli in order to release intracellularly produced recombinant proteins. For misfolded proteins in E. coli, focus is often put on the development of a suitable solubilization and refolding protocol. However, HPH can be a critical unit operation influencing inclusion body (IB) quality and, subsequently, refolding yields. Here, a protocol for homogenization and IB washing is presented in combination with analytical methods suitable to evaluate these unit operations. The protocol is based on a multivariate approach to identify suitable conditions during HPH. Furthermore, the described workflow is easily scalable and can, therefore, also be used if fixed homogenization conditions are already established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swartz JR (2001) Advances in Escherichia coli production of therapeutic proteins. Curr Opin Biotechnol 12(2):195–201

    Article  CAS  Google Scholar 

  2. Yamaguchi H, Miyazaki M (2014) Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomol Ther 4(1):235–251

    Google Scholar 

  3. Huang CJ, Lin H, Yang X (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 39(3):383–399

    Article  CAS  Google Scholar 

  4. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    Article  Google Scholar 

  5. Rathore AS et al (2013) Refolding of biotech therapeutic proteins expressed in bacteria: review. J Chem Technol Biotechnol 88(10):1794–1806

    Article  CAS  Google Scholar 

  6. Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99(4):303–310

    Article  CAS  Google Scholar 

  7. Benov L, Al-Ibraheem J (2002) Disrupting Escherichia coli: a comparison of methods. J Biochem Mol Biol 35(4):428–431

    CAS  Google Scholar 

  8. Mojsin M et al (2005) Purification and functional analysis of the recombinant protein isolated from E. coli by employing three different methods of bacterial lysis. J Serb Chem Soc 70(7):943–950

    Article  CAS  Google Scholar 

  9. Ho CW et al (2008) Comparative evaluation of different cell disruption methods for the release of recombinant hepatitis B core antigen from Escherichia coli. Biotechnol Bioprocess Eng 13(5):577–583

    Article  CAS  Google Scholar 

  10. Vallejo LF, Rinas U (2004) Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Factories 3(1):11

    Article  Google Scholar 

  11. Eggenreich B et al (2020) High pressure homogenization is a key unit operation in inclusion body processing. J Biotechnol 324S:100022

    Article  Google Scholar 

  12. Humer D, Ebner J, Spadiut O (2020) Scalable high-performance production of recombinant horseradish peroxidase from E. coli inclusion bodies. Int J Mol Sci 21(13):4625

    Article  CAS  Google Scholar 

  13. Eggenreich B et al (2017) A combination of HPLC and automated data analysis for monitoring the efficiency of high-pressure homogenization. Microb Cell Factories 16(1):134

    Article  Google Scholar 

  14. Kopp J et al (2020) Development of a generic reversed-phase liquid chromatography method for protein quantification using analytical quality-by-design principles. J Pharm Biomed Anal 188:113412

    Article  CAS  Google Scholar 

  15. Ebner J et al (2021) At-line reversed phase liquid chromatography for in-process monitoring of inclusion body solubilization. Bioengineering (Basel) 8(6):78

    Article  CAS  Google Scholar 

  16. Hettwer D, Wang H (1989) Protein release from Escherichia coli cells permeabilized with guanidine-HCl and triton X100. Biotechnol Bioeng 33(7):886–895

    Article  CAS  Google Scholar 

  17. Middelberg APJ (2000) 2 Microbial cell disruption by high-pressure homogenization. In: Downstream processing of proteins. Springer, Cham, pp 11–21

    Chapter  Google Scholar 

  18. Ramanan RN et al (2009) Classification of pressure range based on the characterization of Escherichia coli cell disruption in high pressure homogenizer. Am J Biochem Biotechnol 5(1):21–29

    Article  CAS  Google Scholar 

  19. Singh RS (2013) A comparative study on cell disruption methods for release of aspartase from E. coli K-12. Indian J Exp Biol 51(11):997–1003

    CAS  Google Scholar 

  20. Kastenhofer J et al (2021) Monitoring and control of E. coli cell integrity. J Biotechnol 329:1–12

    Article  CAS  Google Scholar 

  21. Shrestha P, Holland TM, Bundy BC (2012) Streamlined extract preparation for Escherichia coli-based cell-free protein synthesis by sonication or bead vortex mixing. BioTechniques 53(3):163–174

    Article  CAS  Google Scholar 

  22. Li Q et al (2012) Use of focused acoustics for cell disruption to provide ultra scale-down insights of microbial homogenization and its bioprocess impact – recovery of antibody fragments from rec E. coli. Biotechnol Bioeng 109(8):2059–2069

    Article  CAS  Google Scholar 

  23. Kastenhofer J, Spadiut O (2020) Culture medium density as a simple monitoring tool for cell integrity of Escherichia coli. J Biotechnol 324S:100017

    Article  Google Scholar 

  24. Fykse EM, Olsen JS, Skogan G (2003) Application of sonication to release DNA from Bacillus cereus for quantitative detection by real-time PCR. J Microbiol Methods 55(1):1–10

    Article  CAS  Google Scholar 

  25. Kastenhofer J et al (2021) Economic and ecological benefits of a leaky E. coli strain for downstream processing: a case study for staphylococcal protein A. J Chem Technol Biotechnol 96(6):1667–1674

    Article  CAS  Google Scholar 

  26. Fonseca LP, Cabral JMS (2002) Penicillin acylase release from Escherichia coli cells by mechanical cell disruption and permeabilization. J Chem Technol Biotechnol 77(2):159–167

    Article  CAS  Google Scholar 

  27. Van Hee P et al (2004) Relation between cell disruption conditions, cell debris particle size, and inclusion body release. Biotechnol Bioeng 88(1):100–110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Ebner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ebner, J., Sedlmayr, V., Klausser, R. (2023). High Pressure Homogenization for Inclusion Body Isolation. In: Kopp, J., Spadiut, O. (eds) Inclusion Bodies. Methods in Molecular Biology, vol 2617. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2930-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2930-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2929-1

  • Online ISBN: 978-1-0716-2930-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics