Skip to main content

Avoiding the All-or-None Response in Gene Expression During E. coli Continuous Cultivation Based on the On-Line Monitoring of Cell Phenotypic Switching Dynamics

  • Protocol
  • First Online:
Inclusion Bodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2617))

Abstract

Different expression vectors are available for the effective production of recombinant proteins by bacterial populations. However, the productivity of such systems is limited by the inherent noise of the gene circuits used for the synthesis of recombinant products. An extreme case of cell-to-cell heterogeneity that has been previously reported for the ara- and lac-based expression systems in E. coli is the all-or-none response. According to this mode of response, two subpopulations of cells are generated, i.e., a “low-” subpopulation exhibiting a shallow expression level and a “high-” subpopulation exhibiting a high-expression level. The “low-” subpopulation can be considered as a cluster of non-producing cells contributing to the loss of productivity. Here we describe the setup, design, and operation of a continuous culture where inducer addition is operated based on microbial population dynamics. The determination of population dynamics is done based on an automated flow cytometry (FC) procedure previously denoted as segregostat. We illustrate how this setup can be used to control the activation of an ara-based expression system and avoid phenotypic diversification leading to an all-or-none response. Upon the determination of the natural frequency of the gene circuit used as an expression system, our current protocol can be set up without the requirement of a feedback controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kobayashi H, Kaern M, Araki M, Chung K, Gardner TS, Cantor CR et al (2004) Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad Sci U S A 101:8414–8419

    Article  CAS  Google Scholar 

  2. Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467:167–173

    Article  CAS  Google Scholar 

  3. Alon U (2020) An introduction to systems biology, 2nd edn. CRC Press, CRC Press, Boca Raton, USA

    Google Scholar 

  4. Shoval O, Alon U (2010) SnapShot: network motifs. Cell 143:326–3e1

    Article  Google Scholar 

  5. Hong J, Brandt N, Abdul-Rahman F, Yang A, Hughes T, Gresham D (2018) An incoherent feedforward loop facilitates adaptive tuning of gene expression. elife:7, e32323

    Google Scholar 

  6. Mangan S, Zaslaver A, Alon U (2003) The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J Mol Biol England 334:197–204

    Article  CAS  Google Scholar 

  7. Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J (2008) A fast, robust and tunable synthetic gene oscillator. Nature 456:516–519

    Article  CAS  Google Scholar 

  8. Veening J-W, Smits WK, Kuipers OP (2008) Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol 62:193–210

    Article  CAS  Google Scholar 

  9. Sagmeister P, Schimek C, Meitz A, Herwig C, Spadiut O (2014) Tunable recombinant protein expression with E. coli in a mixed-feed environment. Appl Microbiol Biotechnol Germany 98:2937–2945

    Article  CAS  Google Scholar 

  10. Lugagne J-B, Sosa Carrillo S, Kirch M, Kohler A, Batt G, Hersen P (2017) Balancing a genetic toggle switch by real-time feedback control and periodic forcing. Nat Commun 8:1671

    Article  Google Scholar 

  11. Delvigne F, Baert J, Sassi H, Fickers P, Grünberger A, Dusny C (2017) Taking control over microbial populations: current approaches for exploiting biological noise in bioprocesses. Biotechnol J [Internet] 12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019932273&doi=10.1002%2fbiot.201600549&partnerID=40&md5=a670e6f71a8a5de1e1788a7fda2fdcc2

  12. Binder D, Drepper T, Jaeger K-E, Delvigne F, Wiechert W, Kohlheyer D et al (2017) Homogenizing bacterial cell factories: analysis and engineering of phenotypic heterogeneity. Metab Eng 42:145–156

    Article  CAS  Google Scholar 

  13. Swain PS, Elowitz MB, Siggia ED (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. PNAS 99:12795–12800

    Article  CAS  Google Scholar 

  14. Norman TM, Lord ND, Paulsson J, Losick R (2015) Stochastic switching of cell fate in microbes. Annu Rev Microbiol United States 69:381–403

    Article  CAS  Google Scholar 

  15. Milias-Argeitis A, Rullan M, Aoki SK, Buchmann P, Khammash M (2016) Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth. Nat Commun 7:12546

    Article  CAS  Google Scholar 

  16. Rullan M, Benzinger D, Schmidt GW, Milias-Argeitis A, Khammash M (2018) An Optogenetic platform for real-time, single-cell interrogation of stochastic transcriptional regulation. Mol Cell 70:745–756.e6

    Article  CAS  Google Scholar 

  17. Nguyen TM, Telek S, Zicler A, Martinez JA, Zacchetti B, Kopp J et al (2021) Reducing phenotypic instabilities of a microbial population during continuous cultivation based on cell switching dynamics. Biotechnol Bioeng 118:3847

    Article  CAS  Google Scholar 

  18. Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci U S A 100:11980–11985

    Article  CAS  Google Scholar 

  19. Megerle JA, Fritz G, Gerland U, Jung K, Rädler JO (2008) Timing and dynamics of single cell gene expression in the arabinose utilization system. Biophys J 95:2103–2115

    Article  CAS  Google Scholar 

  20. Thattai M, van Oudenaarden A (2004) Stochastic gene expression in fluctuating environments. Genetics 167:523–530

    Article  Google Scholar 

  21. Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science 309:2075–2078

    Article  CAS  Google Scholar 

  22. Sassi H, Nguyen TM, Telek S, Gosset G, Grünberger A, Delvigne F (2019) Segregostat: a novel concept to control phenotypic diversification dynamics on the example of Gram-negative bacteria. Microb Biotechnol 12:1064–1075

    Article  CAS  Google Scholar 

  23. Brognaux A, Han S, Sørensen SJ, Lebeau F, Thonart P, Delvigne F (2013) A low-cost, multiplexable, automated flow cytometry procedure for the characterization of microbial stress dynamics in bioreactors. Microbial Cell Factories [Internet] 12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887895265&doi=10.1186%2f1475-2859-12-100&partnerID=40&md5=8e3233c267b4929609f0790be8adb101

  24. Delvigne F, Baert J, Gofflot S, Lejeune A, Telek S, Johanson T et al (2015) Dynamic single-cell analysis of Saccharomyces cerevisiae under process perturbation: comparison of different methods for monitoring the intensity of population heterogeneity. J Chem Technol Biotechnol 90:314–323

    Article  CAS  Google Scholar 

  25. Baert J, Kinet R, Brognaux A, Delepierre A, Telek S, Sørensen SJ et al (2015) Phenotypic variability in bioprocessing conditions can be tracked on the basis of on-line flow cytometry and fits to a scaling law. Biotechnol J 10:1316–1325

    Article  CAS  Google Scholar 

  26. Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N et al (2011) BglBrick vectors and datasheets: a synthetic biology platform for gene expression. J Biol Eng 5:12

    Article  CAS  Google Scholar 

  27. Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S et al (2006) A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3:623–628

    Article  CAS  Google Scholar 

  28. Bouchedja DN, Danthine S, Kar T, Fickers P, Boudjellal A, Delvigne F (2017) Online flow cytometry, an interesting investigation process for monitoring lipid accumulation, dimorphism, and cells’ growth in the oleaginous yeast Yarrowia lipolytica JMY 775. Bioresour Bioprocess [Internet] 4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018405744&doi=10.1186%2fs40643-016-0132-6&partnerID=40&md5=f35e205adfe7051497a0de3c1c3c660f

  29. Bouchedja DN, Danthine S, Kar T, Fickers P, Sassi H, Boudjellal A et al (2018) pH level has a strong impact on population dynamics of the yeast Yarrowia lipolytica and oil micro-droplets in multiphasic bioreactor. FEMS Microbiol Lett [Internet] 365. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062406652&doi=10.1093%2ffemsle%2ffny173&partnerID=40&md5=3338819b66332934e3a675a06deffb2b

  30. Milo R, Phillips R (2016) Cell biology by the numbers. Garland Science, Garland Science, New York, USA

    Google Scholar 

  31. Lin H, Hoffmann F, Rozkov A, Enfors S-O, Rinas U, Neubauer P (2004) Change of extracellular cAMP concentration is a sensitive reporter for bacterial fitness in high-cell-density cultures of Escherichia coli. Biotechnol Bioeng 87:602–613

    Article  CAS  Google Scholar 

  32. Masel J, Siegal ML (2009) Robustness: mechanisms and consequences. Trends Genet 25:395–403

    Article  CAS  Google Scholar 

  33. Benzinger D, Khammash M (2018) Pulsatile inputs achieve tunable attenuation of gene expression variability and graded multi-gene regulation. Nat Commun 9:3521

    Article  Google Scholar 

  34. Yurkovsky E, Nachman I (2013) Event timing at the single-cell level. Brief Funct Genomics England 12:90–98

    Article  CAS  Google Scholar 

  35. Pedraza JM, Paulsson J (2007) Random timing in signaling cascades. Mol Syst Biol 3:81

    Article  Google Scholar 

  36. Ghusinga KR, Dennehy JJ, Singh A (2017) First-passage time approach to controlling noise in the timing of intracellular events. Proc Natl Acad Sci U S A 114:693–698

    Article  CAS  Google Scholar 

Download references

Acknowledgments

LH is the recipient of a FRIA grant provided by the FNRS. JAM is the recipient of a post-doctoral grant provided through an Era-Cobiotech project “Contibio” (project funded through the H2020 program of the European Union).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Delvigne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Delvigne, F., Henrion, L., Vandenbroucke, V., Martinez, J.A. (2023). Avoiding the All-or-None Response in Gene Expression During E. coli Continuous Cultivation Based on the On-Line Monitoring of Cell Phenotypic Switching Dynamics. In: Kopp, J., Spadiut, O. (eds) Inclusion Bodies. Methods in Molecular Biology, vol 2617. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2930-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2930-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2929-1

  • Online ISBN: 978-1-0716-2930-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics