Abstract
In bioprocesses, which target the production of recombinant proteins as inclusion bodies, the upstream process has a decisive influence on the downstream operations, especially regarding cell disruption, inclusion body purity and composition, and refolding yield. Therefore, optimization of the processes in fed-batch mode is a major issue, and screening for strains and process conditions are performed in highly labor, time and cost intensive shake flasks or multiwell plates. Thus, high-throughput experiments performed similar to the industrial operating conditions offer a possibility to develop efficient and robust upstream processes. We present here an automated platform for Escherichia coli fed-batch cultivations in parallelized minibioreactors. The platform allows execution of experiments under multiple conditions while allowing for real-time monitoring of critical process parameters and a controlled fermentation environment. By this, the main factors that affect yields and quality of inclusion bodies can be investigated, speeding up the development process significantly.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Marston FA (1986) The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem J 240:1–12. https://doi.org/10.1042/bj2400001
Margreiter G, Schwanninger M, Bayer K, Obinger C (2008) Impact of different cultivation and induction regimes on the structure of cytosolic inclusion bodies of TEM1-β-lactamase. Biotechnol J 3:1245–1255. https://doi.org/10.1002/biot.200800072
Georgiou G, Valax P (1999) Isolating inclusion bodies from bacteria. Methods Enzymol 309:48–58. https://doi.org/10.1016/S0076-6879(99)09005-9
Strandberg L, Enfors SO (1991) Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli. Appl Environ Microbiol 57:1669–1674. https://doi.org/10.1128/aem.57.6.1669-1674.1991
Bhatwa A, Wang W, Hassan YI, Abraham N, Li X (2021) Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Front Bioeng Biotechnol 9:1–18. https://doi.org/10.3389/fbioe.2021.630551
Carrió MM, Cubarsi R, Villaverde A (2000) Fine architecture of bacterial inclusion bodies. FEBS Lett 471:7–11. https://doi.org/10.1016/S0014-5793(00)01357-0
Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK (2015) Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact 14:41. https://doi.org/10.1186/s12934-015-0222-8
Ramón A, Señorale-Pose M, Marín M (2014) Inclusion bodies: not that bad... Front Microbiol 5:2010–2015. https://doi.org/10.3389/fmicb.2014.00056
Baeshen MN, Al-Hejin AM, Bora RS, Ahmed MMM, Ramadan HAI, Saini KS, Baeshen NA, Redwan EM (2015) Production of biopharmaceuticals in E. coli: current scenario and future perspectives. J Microbiol Biotechnol 25:953–962. https://doi.org/10.4014/jmb.1412.12079
Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:1–17. https://doi.org/10.3389/fmicb.2014.00172
Teworte S, Malcı K, Walls LE, Halim M, Rios-Solis L (2022) Recent advances in fed-batch microscale bioreactor design. Biotechnol Adv 55:107888. https://doi.org/10.1016/j.biotechadv.2021.107888
Haby B, Hans S, Anane E, Sawatzki A, Krausch N, Neubauer P, Cruz Bournazou MN (2019) Integrated robotic mini bioreactor platform for automated, parallel microbial cultivation with online data handling and process control. SLAS Technol 24:569. https://doi.org/10.1177/2472630319860775
Janzen NH, Striedner G, Jarmer J, Voigtmann M, Abad S, Reinisch D (2019) Implementation of a fully automated microbial cultivation platform for strain and process screening. Biotechnol J 14:1800625. https://doi.org/10.1002/biot.201800625
Velez-Suberbie ML, Betts JPJJ, Walker KL, Robinson C, Zoro B, Keshavarz-Moore E (2017) High-throughput automated microbial bioreactor system used for clone selection and rapid scale-down process optimization. Biotechnol Prog 15:1–11. https://doi.org/10.1002/btpr.2534
Šiurkus J, Neubauer P (2011) Reducing conditions are the key for efficient production of active ribonuclease inhibitor in Escherichia coli. Microb Cell Factories 10:1–15. https://doi.org/10.1186/1475-2859-10-31
Anane E, Sawatzki A, Neubauer P, Cruz-Bournazou MN (2019) Modelling concentration gradients in fed-batch cultivations of E. coli – towards the flexible design of scale-down experiments. J Chem Technol Biotechnol:94. https://doi.org/10.1002/jctb.5798
Funke M, Buchenauer A, Schnakenberg U, Mokwa W, Diederichs S, Mertens A, Müller C, Kensy F, Büchs J (2010) Microfluidic biolector-microfluidic bioprocess control in microtiter plates. Biotechnol Bioeng 107:497–505. https://doi.org/10.1002/bit.22825
Hemmerich J, Noack S, Wiechert W, Oldiges M (2018) Microbioreactor systems for accelerated bioprocess development. Biotechnol J 13:1–9. https://doi.org/10.1002/biot.201700141
Krause M, Ukkonen K, Haataja T, Ruottinen M, Glumoff T, Neubauer A, Neubauer P, Vasala A (2010) A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures. Microb Cell Factories 9:1–11. https://doi.org/10.1186/1475-2859-9-11
Glazyrina J, Materne E-M, Dreher T, Storm D, Junne S, Adams T, Greller G, Neubauer P (2010) High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor. Microb Cell Factories 9:42. https://doi.org/10.1186/1475-2859-9-42
Sundström H, Enfors SO (2008) Software sensors for fermentation processes. Bioprocess Biosyst Eng 31:145–152. https://doi.org/10.1007/s00449-007-0157-5
Anane E, García ÁC, Haby B, Hans S, Krausch N, Krewinkel M, Hauptmann P, Neubauer P, Cruz Bournazou MN (2019) A model-based framework for parallel scale-down fed-batch cultivations in mini-bioreactors for accelerated phenotyping. Biotechnol Bioeng 116:2906–2918. https://doi.org/10.1002/bit.27116
Chory EJ, Gretton DW, DeBenedictis EA, Esvelt KM (2021) Enabling high-throughput biology with flexible open-source automation. Mol Syst Biol. 17:1–10. https://doi.org/10.15252/msb.20209942
Osthege M, Tenhaef N, Zyla R, Müller C, Hemmerich J, Wiechert W, Noack S, Oldiges M (2022) bletl – a Python package for integrating BioLector microcultivation devices in the design-build-test-learn cycle. Eng Life Sci:1–18. https://doi.org/10.1002/elsc.202100108
Arnold C (2022) Cloud labs: where robots do the research. Nature 606:612–613. https://doi.org/10.1038/d41586-022-01618-x
Barz T, Sommer A, Wilms T, Neubauer P, Cruz Bournazou MN (2018) Adaptive optimal operation of a parallel robotic liquid handling station. Elsevier B.V., pp 765–770. https://doi.org/10.1016/j.ifacol.2018.04.006
Cruz Bournazou MN, Barz T, Nickel DB, Lopez DC, Glauche F, Knepper A, Neubauer P (2017) Online optimal experimental re-design in robotic parallel fed-batch cultivation facilities. Biotechnol Bioeng 114:610–619. https://doi.org/10.1002/bit.26192
Sawatzki A, Hans S, Narayanan H, Haby B, Krausch N, Sokolov M, Glauche F, Riedel SL, Neubauer P, Cruz Bournazou MN (2018) Accelerated bioprocess development of endopolygalacturonase-production with saccharomyces cerevisiae using multivariate prediction in a 48 mini-bioreactor automated platform. Bioengineering. 5. https://doi.org/10.3390/bioengineering5040101
Hans S, Haby B, Krausch N, Barz T, Neubauer P, Cruz-Bournazou MN (2020) Automated conditional screening of multiple Escherichia coli strains in parallel adaptive fed-batch cultivations. Bioengineering 7:145. https://doi.org/10.3390/bioengineering7040145
Krausch N, Kim JW, Barz T, Lucia S, Groß S, Huber MC, Schiller SM, Neubauer P, Cruz Bournazou MN (2022) High-throughput screening of optimal process conditions using model predictive control. Authorea. 558010. https://doi.org/10.22541/au.164600498.85996662/v2
Anane E, López CDC, Neubauer P, Cruz Bournazou MN (2017) Modelling overflow metabolism in Escherichia coli by acetate cycling. Biochem Eng J. 125:23–30. https://doi.org/10.1016/j.bej.2017.05.013
Kusterer A, Krause C, Kaufmann K, Arnold M, Weuster-Botz D (2008) Fully automated single-use stirred-tank bioreactors for parallel microbial cultivations. Bioprocess Biosyst Eng 31:207–215. https://doi.org/10.1007/s00449-007-0195-z
Newton J, Oeggl R, Janzen NH, Abad S, Reinisch D (2020) Process adapted calibration improves fluorometric pH sensor precision in sophisticated fermentation processes. Eng Life Sci 20:331–337. https://doi.org/10.1002/elsc.201900156
Hoffmann F, Rinas U (2004) Stress induced by recombinant protein production in Escherichia coli. Adv Biochem Eng Biotechnol 89:73–92. https://doi.org/10.1007/b93994
Neubauer P, Häggström L, Enfors S-O (1995) Influence of substrate oscillations on acetate formation and growth yield in Escherichia coli glucose limited fed-batch cultivations. Biotechnol Bioeng 47:139–146. https://doi.org/10.1002/bit.260470204
Neubauer P, Lin HY, Mathiszik B (2003) Metabolic load of recombinant protein production: inhibition of cellular capacities for glucose uptake and respiration after induction of a heterologous gene in Escherichia coli. Biotechnol Bioeng 83:53–64. https://doi.org/10.1002/bit.10645
Bhattacharya SK, Dubey AK (1995) Metabolic burden as reflected by maintenance coefficient of recombinant Escherichia coli overexpressing target gene. Biotechnol Lett 17:1155–1160. https://doi.org/10.1007/BF00128377
Lin H, Hanschke R, Nicklisch S, Nietsche T, Jarchow R, Riemschneider S, Meyer S, Gupta A, Hecker M, Neubauer P (2001) Cellular responses to strong overexpression of recombinant genes in Escherichia Coli. Recomb Protein Prod Prokaryotic Eukaryot Cells Comp View Host Physiol.:1–19. https://doi.org/10.1007/978-94-015-9749-4_5
Mears L, Stocks SM, Albaek MO, Sin G, Gernaey KV (2017) Application of a mechanistic model as a tool for on-line monitoring of pilot scale filamentous fungal fermentation processes—the importance of evaporation effects. Biotechnol Bioeng 114:589–599. https://doi.org/10.1002/bit.26187
Kawohl M, Heine T, King R (2007) Model-based estimation and optimal control of fed-batch fermentation processes for the production of antibiotics. Chem Eng Process Process Intensif 46:1223–1241. https://doi.org/10.1016/j.cep.2006.06.023
Waldraff W, King R, Gilles ED (1997) Optimal feeding strategies by adaptive mesh selection for fed-batch bioprocesses. Bioprocess Eng 17:221–227. https://doi.org/10.1007/s004490050378
Acknowledgments
The authors would like to thank Jonathan Poit, Frederick Steiner, and Nicolas Feuser for the design and printing of the stirrer caps. Annina Kemmer thanks Boehringer Ingelheim RCV GmbH & Co KG for financial support. This work was supported by the German Federal Ministry of Education and Research through the International Future Labs for Artificial Intelligence Program (Grant number 01DD20002A KIWI-biolab).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Kemmer, A., Cai, L., Cruz Bournazou, M.N., Neubauer, P. (2023). High-Throughput Expression of Inclusion Bodies on an Automated Platform. In: Kopp, J., Spadiut, O. (eds) Inclusion Bodies. Methods in Molecular Biology, vol 2617. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2930-7_3
Download citation
DOI: https://doi.org/10.1007/978-1-0716-2930-7_3
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-2929-1
Online ISBN: 978-1-0716-2930-7
eBook Packages: Springer Protocols