Skip to main content

Measurement of Nucleoid Size Using STED Microscopy

  • Protocol
  • First Online:
Mitochondrial DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2615))

Abstract

Mitochondria are equipped with their own DNA (mtDNA), which is packed into structures termed nucleoids . While nucleoids can be visualized in situ by fluorescence microscopy , the advent of super-resolution microscopy , and in particular of stimulated emission depletion (STED), has recently enabled the visualization of nucleoids at sub-diffraction resolution. Super-resolution microscopy has proved an invaluable tool for addressing fundamental questions in mitochondrial biology. In this chapter I describe how to achieve efficient labeling of mtDNA and how to quantify nucleoid diameter using an automated approach in fixed cultured cells by STED microscopy .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20(7):745–754. https://doi.org/10.1038/s41556-018-0124-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Giorgi C, Marchi S, Pinton P (2018) The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol 19(11):713–730. https://doi.org/10.1038/s41580-018-0052-8

    Article  CAS  PubMed  Google Scholar 

  3. Scorrano L (2009) Opening the doors to cytochrome c: changes in mitochondrial shape and apoptosis. Int J Biochem Cell Biol 41(10):1875–1883. https://doi.org/10.1016/j.biocel.2009.04.016

    Article  CAS  PubMed  Google Scholar 

  4. Gustafsson CM, Falkenberg M, Larsson NG (2016) Maintenance and expression of mammalian mitochondrial DNA. Annu Rev Biochem 85:133–160. https://doi.org/10.1146/annurev-biochem-060815-014402

    Article  CAS  PubMed  Google Scholar 

  5. Kauppila TES, Kauppila JHK, Larsson NG (2017) Mammalian mitochondria and aging: an update. Cell Metab 25(1):57–71. https://doi.org/10.1016/j.cmet.2016.09.017

    Article  CAS  PubMed  Google Scholar 

  6. Kukat C, Davies KM, Wurm CA, Spahr H, Bonekamp NA, Kuhl I, Joos F, Polosa PL, Park CB, Posse V, Falkenberg M, Jakobs S, Kuhlbrandt W, Larsson NG (2015) Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. Proc Natl Acad Sci U S A 112(36):11288–11293. https://doi.org/10.1073/pnas.1512131112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garrido N, Griparic L, Jokitalo E, Wartiovaara J, van der Bliek AM, Spelbrink JN (2003) Composition and dynamics of human mitochondrial nucleoids. Mol Biol Cell 14(4):1583–1596. https://doi.org/10.1091/mbc.e02-07-0399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kukat C, Wurm CA, Spahr H, Falkenberg M, Larsson NG, Jakobs S (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci U S A 108(33):13534–13539. https://doi.org/10.1073/pnas.1109263108

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782. https://doi.org/10.1364/ol.19.000780

    Article  CAS  PubMed  Google Scholar 

  10. Hell SW (2010) Far-field optical nanoscopy. In: Single molecule spectroscopy in chemistry, physics and biology. Springer, pp 365–398. https://doi.org/10.1007/978-3-642-02597-6_19

  11. Brown TA, Tkachuk AN, Shtengel G, Kopek BG, Bogenhagen DF, Hess HF, Clayton DA (2011) Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol Cell Biol 31(24):4994–5010. https://doi.org/10.1128/MCB.05694-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stephan T, Roesch A, Riedel D, Jakobs S (2019) Live-cell STED nanoscopy of mitochondrial cristae. Sci Rep 9(1):12419. https://doi.org/10.1038/s41598-019-48838-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Silva Ramos E, Motori E, Bruser C, Kuhl I, Yeroslaviz A, Ruzzenente B, Kauppila JHK, Busch JD, Hultenby K, Habermann BH, Jakobs S, Larsson NG, Mourier A (2019) Mitochondrial fusion is required for regulation of mitochondrial DNA replication. PLoS Genet 15(6):e1008085. https://doi.org/10.1371/journal.pgen.1008085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nicholls TJ, Nadalutti CA, Motori E, Sommerville EW, Gorman GS, Basu S, Hoberg E, Turnbull DM, Chinnery PF, Larsson NG, Larsson E, Falkenberg M, Taylor RW, Griffith JD, Gustafsson CM (2018) Topoisomerase 3alpha is required for decatenation and segregation of human mtDNA. Mol Cell 69(1):9–23 e26. https://doi.org/10.1016/j.molcel.2017.11.033

    Article  CAS  PubMed  Google Scholar 

  15. Eggeling C, Hell SW (2015) STED fluorescence nanoscopy. In: Tinnefeld P, Eggeling C, Hell SW (eds) Far-field optical nanoscopy. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 3–25

    Google Scholar 

  16. https://imagej.nih.gov/ij/index.html

  17. https://imagej.nih.gov/ij/plugins/fwhm/index.html

  18. LeicaMicrosystems: the guide to STED sample preparation. https://www.leica-microsystems.com/science-lab/the-guide-to-sted-sample-preparation/ (2019)

  19. Wurm CA, Neumann D, Schmidt R, Egner A, Jakobs S (2010) Sample preparation for STED microscopy. In: Papkovsky DB (ed) Live cell imaging: methods and protocols. Humana Press, Totowa, NJ, pp 185–199

    Chapter  Google Scholar 

  20. Vicidomini G, Bianchini P, Diaspro A (2018) STED super-resolved microscopy. Nat Methods 15(3):173–182. https://doi.org/10.1038/nmeth.4593

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

STED images were acquired at the CECAD imaging facility. E.M. is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Fundation)- SFB 1218 - grant number 269925409.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Motori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Motori, E. (2023). Measurement of Nucleoid Size Using STED Microscopy. In: Nicholls, T.J., Uhler, J.P., Falkenberg, M. (eds) Mitochondrial DNA. Methods in Molecular Biology, vol 2615. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2922-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2922-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2921-5

  • Online ISBN: 978-1-0716-2922-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics