Skip to main content

Chemical Synthesis and Molecular Interaction Analysis of α-Galactosyl Ceramide Derivatives as CD1d Ligands

  • Protocol
  • First Online:
Glycolipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2613))

Abstract

CD1d is a non-classical major histocompatibility complex (MHC) protein, responsible for lipid antigen presentation, which presents lipids to natural killer T (NKT) cells. Various CD1d lipid ligands have been reported, including microbial and endogenous glycolipids/phospholipids. Among them, an α-galactosylceramide (α-GalCer), a representative CD1d ligand, is one of the most potent ligands and its derivatives have been developed. In this chapter, the chemistry of α-GalCer and its derivatives are described with an emphasis on their chemical syntheses and molecular interaction analysis with CD1d are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morita M, Motoki K, Akimoto K, Natori T, Sakai T, Sawa E, Yamaji K, Koezuka Y, Kobayashi E, Fukushima H (1995) Structure-activity relationship of .alpha.-Galactosylceramides against B16-bearing mice. J Med Chem 38(12):2176–2187. https://doi.org/10.1021/jm00012a018

    Article  Google Scholar 

  2. Natori T, Koezuka Y, Higa T (1993) Agelasphins, novel α-galactosylceramides from the marine sponge Agelas mauritianus. Tetrahedron Lett 34(35):5591–5592. https://doi.org/10.1016/s0040-4039(00)73889-5

    Article  Google Scholar 

  3. Natori T, Morita M, Akimoto K, Koezuka Y (1994) Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas mauritianus. Tetrahedron 50(9):2771–2784. https://doi.org/10.1016/s0040-4020(01)86991-x

    Article  Google Scholar 

  4. Motoki K, Morita M, Kobayashi E, Uchida T, Akimoto K, Fukushima H, Koezuka Y (1995) Immunostimulatory and antitumor activities of Monoglycosylceramides having various sugar moieties. Biol Pharm Bull 18(11):1487–1491. https://doi.org/10.1248/bpb.18.1487

    Article  Google Scholar 

  5. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278(5343):1626–1629. https://doi.org/10.1126/science.278.5343.1626

    Article  Google Scholar 

  6. Laurent X, Bertin B, Renault N, Farce A, Speca S, Milhomme O, Millet R, Desreumaux P, Hénon E, Chavatte P (2014) Switching invariant natural killer T (iNKT) cell response from Anticancerous to anti-inflammatory effect: molecular bases. J Med Chem 57(13):5489–5508. https://doi.org/10.1021/jm4010863

    Article  Google Scholar 

  7. Rossjohn J, Pellicci DG, Patel O, Gapin L, Godfrey DI (2012) Recognition of CD1d-restricted antigens by natural killer T cells. Nat Rev Immunol 12(12):845–857. https://doi.org/10.1038/nri3328

    Article  Google Scholar 

  8. Li X, Fujio M, Imamura M, Wu D, Vasan S, Wong CH, Ho DD, Tsuji M (2010) Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc Natl Acad Sci 107(29):13010–13015. https://doi.org/10.1073/pnas.1006662107

    Article  Google Scholar 

  9. Liang PH, Imamura M, Li X, Wu D, Fujio M, Guy RT, Wu BC, Tsuji M, Wong CH (2008) Quantitative microarray analysis of intact glycolipid-CD1d interaction and correlation with cell-based cytokine production. J Am Chem Soc 130(37):12348–12354. https://doi.org/10.1021/ja8012787

    Article  Google Scholar 

  10. Hossain MI, Hanashima S, Nomura T, Lethu S, Tsuchikawa H, Murata M, Kusaka H, Kita S, Maenaka K (2016) Synthesis and Th1-immunostimulatory activity of α-galactosylceramide analogues bearing a halogen-containing or selenium-containing acyl chain. Biorg Med Chem 24(16):3687–3695. https://doi.org/10.1016/j.bmc.2016.06.007

    Article  Google Scholar 

  11. Miyamoto K, Miyake S, Yamamura T (2001) A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413(6855):531–534. https://doi.org/10.1038/35097097

    Article  Google Scholar 

  12. Im JS, Arora P, Bricard G, Molano A, Venkataswamy MM, Baine I, Jerud ES, Goldberg MF, Baena A, Yu KOA, Ndonye RM, Howell AR, Yuan W, Cresswell P, Chang Y-T, Illarionov PA, Besra GS, Porcelli SA (2009) Kinetics and cellular site of glycolipid loading control the outcome of natural killer T cell activation. Immunity 30(6):888–898. https://doi.org/10.1016/j.immuni.2009.03.022

    Article  Google Scholar 

  13. Baek DJ, Lee Y-S, Lim C, Lee D, Lee T, Lee J-Y, Lee K-A, Cho W-J, Kang C-Y, Kim S (2010) Rational design and evaluation of a branched-chain-containing glycolipid antigen that binds to CD1d. Chem Asian J 5(7):1560–1564. https://doi.org/10.1002/asia.201000120

    Article  Google Scholar 

  14. Lee T, Cho M, Ko S-Y, Youn H-J, Baek DJ, Cho W-J, Kang C-Y, Kim S (2007) Synthesis and evaluation of 1,2,3-Triazole containing analogues of the Immunostimulant α-GalCer. J Med Chem 50(3):585–589. https://doi.org/10.1021/jm061243q

    Article  Google Scholar 

  15. Shiozaki M, Tashiro T, Koshino H, Nakagawa R, Inoue S, Shigeura T, Watarai H, Taniguchi M, Mori K (2010) Synthesis and biological activity of ester and ether analogues of α-galactosylceramide (KRN7000). Carbohydr Res 345(12):1663–1684. https://doi.org/10.1016/j.carres.2010.05.003

    Article  Google Scholar 

  16. Jervis PJ, Graham LM, Foster EL, Cox LR, Porcelli SA, Besra GS (2012) New CD1d agonists: synthesis and biological activity of 6″-triazole-substituted alpha-galactosyl ceramides. Bioorg Med Chem Lett 22(13):4348–4352. https://doi.org/10.1016/j.bmcl.2012.05.009

    Article  Google Scholar 

  17. Hu L, Zhao C, Ma J, Jing Y, Du Y (2019) Design, synthesis, and evaluation of alpha-galactopyranosylceramide mimics promoting Th2 cytokines production. Bioorg Med Chem Lett 29(11):1357–1362. https://doi.org/10.1016/j.bmcl.2019.03.043

    Article  Google Scholar 

  18. Inuki S, Aiba T, Hirata N, Ichihara O, Yoshidome D, Kita S, Maenaka K, Fukase K, Fujimoto Y (2016) Isolated polar amino acid residues modulate lipid binding in the large hydrophobic cavity of CD1d. ACS Chem Biol 11(11):3132–3139. https://doi.org/10.1021/acschembio.6b00674

    Article  Google Scholar 

  19. Inuki S, Kashiwabara E, Hirata N, Kishi J, Nabika E, Fujimoto Y (2018) Potent Th2 cytokine bias of natural killer T cell by CD1d glycolipid ligands: anchoring effect of polar groups in the lipid component. Angew Chem Int Ed Engl 57(31):9655–9659. https://doi.org/10.1002/anie.201802983

    Article  Google Scholar 

  20. Inuki S, Hirata N, Kashiwabara E, Kishi J, Aiba T, Teratani T, Nakamura W, Kojima Y, Maruyama T, Kanai T, Fujimoto Y (2020) Polar functional group-containing glycolipid CD1d ligands modulate cytokine-biasing responses and prevent experimental colitis. Sci Rep 10(1):15766. https://doi.org/10.1038/s41598-020-72280-4

    Article  Google Scholar 

  21. Kishi J, Inuki S, Kashiwabara E, Suzuki T, Dohmae N, Fujimoto Y (2020) Design and discovery of covalent alpha-GalCer derivatives as potent CD1d ligands. ACS Chem Biol 15(2):353–359. https://doi.org/10.1021/acschembio.9b00700

    Article  Google Scholar 

  22. Van Eijkeren RJ, Krabbe O, Boes M, Schipper HS, Kalkhoven E (2018) Endogenous lipid antigens for invariant natural killer T cells hold the reins in adipose tissue homeostasis. Immunology 153(2):179–189. https://doi.org/10.1111/imm.12839

    Article  Google Scholar 

  23. Wu D, Zajonc DM, Fujio M, Sullivan BA, Kinjo Y, Kronenberg M, Wilson IA, Wong CH (2006) Design of natural killer T cell activators: structure and function of a microbial glycosphingolipid bound to mouse CD1d. Proc Natl Acad Sci 103(11):3972–3977. https://doi.org/10.1073/pnas.0600285103

    Article  Google Scholar 

  24. Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R, Benhnia MR-E-I, Zajonc DM, Ben-Menachem G, Ainge GD, Painter GF, Khurana A, Hoebe K, Behar SM, Beutler B, Wilson IA, Tsuji M, Sellati TJ, Wong C-H, Kronenberg M (2006) Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 7(9):978–986. https://doi.org/10.1038/ni1380

    Article  Google Scholar 

  25. Albacker LA, Chaudhary V, Chang Y-J, Kim HY, Chuang Y-T, Pichavant M, Dekruyff RH, Savage PB, Umetsu DT (2013) Invariant natural killer T cells recognize a fungal glycosphingolipid that can induce airway hyperreactivity. Nat Med 19(10):1297–1304. https://doi.org/10.1038/nm.3321

    Article  Google Scholar 

  26. Lotter H, González-Roldán N, Lindner B, Winau F, Isibasi A, Moreno-Lafont M, Ulmer AJ, Holst O, Tannich E, Jacobs T (2009) Natural killer T cells activated by a Lipopeptidophosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess. PLoS Pathog 5(5):e1000434. https://doi.org/10.1371/journal.ppat.1000434

    Article  Google Scholar 

  27. Zhou D, Mattner J, Cantu C 3rd, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu YP, Yamashita T, Teneberg S, Wang D, Proia RL, Levery SB, Savage PB, Teyton L, Bendelac A (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306(5702):1786–1789. https://doi.org/10.1126/science.1103440

    Article  Google Scholar 

  28. Pellicci DG, Clarke AJ, Patel O, Mallevaey T, Beddoe T, Le Nours J, Uldrich AP, McCluskey J, Besra GS, Porcelli SA, Gapin L, Godfrey DI, Rossjohn J (2011) Recognition of β-linked self glycolipids mediated by natural killer T cell antigen receptors. Nat Immunol 12(9):827–833. https://doi.org/10.1038/ni.2076

    Article  Google Scholar 

  29. Mallevaey T, Clarke AJ, Scott-Browne JP, Young MH, Roisman LC, Pellicci DG, Patel O, Vivian JP, Matsuda JL, McCluskey J, Godfrey DI, Marrack P, Rossjohn J, Gapin L (2011) A molecular basis for NKT cell recognition of CD1d-self-antigen. Immunity 34(3):315–326. https://doi.org/10.1016/j.immuni.2011.01.013

    Article  Google Scholar 

  30. Facciotti F, Ramanjaneyulu GS, Lepore M, Sansano S, Cavallari M, Kistowska M, Forss-Petter S, Ni G, Colone A, Singhal A, Berger J, Xia C, Mori L, De Libero G (2012) Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus. Nat Immunol 13(5):474–480. https://doi.org/10.1038/ni.2245

    Article  Google Scholar 

  31. Fox LM, Cox DG, Lockridge JL, Wang X, Chen X, Scharf L, Trott DL, Ndonye RM, Veerapen N, Besra GS, Howell AR, Cook ME, Adams EJ, Hildebrand WH, Gumperz JE (2009) Recognition of Lyso-phospholipids by human natural killer T lymphocytes. PLoS Biol 7(10):e1000228. https://doi.org/10.1371/journal.pbio.1000228

    Article  Google Scholar 

  32. Dieudé M, Striegl H, Tyznik AJ, Wang J, Behar SM, Piccirillo CA, Levine JS, Zajonc DM, Rauch J (2011) Cardiolipin binds to CD1d and stimulates CD1d-restricted γδ T cells in the normal murine repertoire. J Immunol 186(8):4771–4781. https://doi.org/10.4049/jimmunol.1000921

    Article  Google Scholar 

  33. Cox D, Fox L, Tian R, Bardet W, Skaley M, Mojsilovic D, Gumperz J, Hildebrand W (2009) Determination of cellular lipids bound to human CD1d molecules. PLoS One 4(5):e5325. https://doi.org/10.1371/journal.pone.0005325

    Article  Google Scholar 

  34. Michieletti M, Bracci A, Compostella F, De Libero G, Mori L, Fallarini S, Lombardi G, Panza L (2008) Synthesis of α-Galactosyl Ceramide (KRN7000) and Analogues Thereof via a Common Precursor and Their Preliminary Biological Assessment. J Org Chem 73(22):9192-9195. https://doi.org/10.1021/jo8019994

    Article  Google Scholar 

  35. Du W, Gervay-Hague J (2005) Efficient synthesis of α-Galactosyl ceramide analogues using Glycosyl iodide donors. Org Lett 7(10):2063–2065. https://doi.org/10.1021/ol050659f

    Article  Google Scholar 

  36. Fan G-T, Pan Y-S, Lu K-C, Cheng Y-P, Lin W-C, Lin S, Lin C-H, Wong C-H, Fang J-M, Lin C-C (2005) Synthesis of α-galactosyl ceramide and the related glycolipids for evaluation of their activities on mouse splenocytes. Tetrahedron 61(7):1855–1862. https://doi.org/10.1016/j.tet.2004.12.027

    Article  Google Scholar 

  37. Naidenko OV, Maher JK, Ernst WA, Sakai T, Modlin RL, Kronenberg M (1999) Binding and Antigen Presentation of Ceramide-Containing Glycolipids by Soluble Mouse and Human Cd1d Molecules. J Exp Med 190(8):1069-1080. https://doi.org/10.1084/jem.190.8.1069

    Article  Google Scholar 

  38. Cantu C 3rd, Benlagha K, Savage PB, Bendelac A, Teyton L (2003) The paradox of immune molecular recognition of alpha-galactosylceramide: low affinity, low specificity for CD1d, high affinity for alpha beta TCRs. J Immunol 170(9):4673–4682. https://doi.org/10.4049/jimmunol.170.9.4673

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukari Fujimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ueki, K., Sueyoshi, K., Inuki, S., Fujimoto, Y. (2023). Chemical Synthesis and Molecular Interaction Analysis of α-Galactosyl Ceramide Derivatives as CD1d Ligands. In: Kabayama, K., Inokuchi, Ji. (eds) Glycolipids. Methods in Molecular Biology, vol 2613. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2910-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2910-9_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2909-3

  • Online ISBN: 978-1-0716-2910-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics