Skip to main content

A Simple Method to Study ADP-Ribosylation Reversal: From Function to Drug Discovery

  • Protocol
  • First Online:
Poly(ADP-Ribose) Polymerase

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2609))

Abstract

ADP-ribosylation is an ancient modification of proteins, nucleic acids, and other biomolecules found in all kingdoms of life as well as in certain viruses. The regulation of fundamental (patho)physiological processes by ADP-ribosylation, including the cellular stress response, inflammation, and immune response to bacterial and viral pathogens, has created a strong interest into the study of modification establishment and removal to explore novel therapeutic approaches. Beyond ADP-ribosylation in humans, direct targeting of factors that alter host ADP-ribosylation signaling (e.g., viral macrodomains) or utilize ADP-ribosylation to manipulate host cell behavior (e.g., bacterial toxins) were shown to reduce virulence and disease severity. However, the realization of these therapeutic potentials is thus far hampered by the unavailability of simple, high-throughput methods to study the modification “writers” and “erasers” and screen for novel inhibitors.

Here, we describe a scalable method for the measurement of (ADP-ribosyl)hydrolase activity. The assay relies on the conversion of ADP-ribose released from a modified substrate by the (ADP-ribosyl)hydrolase under investigation into AMP by the phosphodiesterase NudT5 into bioluminescence via a commercially available detection assay. Moreover, this method can be utilized to study the role of nudix- or ENPP-type phosphodiesterases in ADP-ribosylation processing and may also be adapted to investigate the activity of (ADP-ribosyl)transferases. Overall, this method is applicable for both basic biochemical characterization and screening of large drug libraries; hence, it is highly adaptable to diverse project needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perina D, Mikoc A, Ahel J, Cetkovic H, Zaja R, Ahel I (2014) Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life. DNA Repair (Amst) 23:4–16. https://doi.org/10.1016/j.dnarep.2014.05.003

    Article  CAS  Google Scholar 

  2. Mikolcevic P, Hlousek-Kasun A, Ahel I, Mikoc A (2021) ADP-ribosylation systems in bacteria and viruses. Comput Struct Biotechnol J 19:2366–2383. https://doi.org/10.1016/j.csbj.2021.04.023

    Article  CAS  Google Scholar 

  3. Juarez-Salinas H, Levi V, Jacobson EL, Jacobson MK (1982) Poly(ADP-ribose) has a branched structure in vivo. J Biol Chem 257(2):607–609

    Article  CAS  Google Scholar 

  4. Miwa M, Saikawa N, Yamaizumi Z, Nishimura S, Sugimura T (1979) Structure of poly(adenosine diphosphate ribose): identification of 2′-[1″-ribosyl-2″-(or 3″-)(1‴-ribosyl)]adenosine-5′,5″,5‴-tris(phosphate) as a branch linkage. Proc Natl Acad Sci U S A 76(2):595–599. https://doi.org/10.1073/pnas.76.2.595

    Article  CAS  Google Scholar 

  5. Vyas S, Matic I, Uchima L, Rood J, Zaja R, Hay RT, Ahel I, Chang P (2014) Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun 5:4426. https://doi.org/10.1038/ncomms5426

    Article  CAS  Google Scholar 

  6. Luscher B, Ahel I, Altmeyer M, Ashworth A, Bai P, Chang P, Cohen M, Corda D, Dantzer F, Daugherty MD, Dawson TM, Dawson VL, Deindl S, Fehr AR, Feijs KLH, Filippov DV, Gagne JP, Grimaldi G, Guettler S, Hoch NC, Hottiger MO, Korn P, Kraus WL, Ladurner A, Lehtio L, Leung AKL, Lord CJ, Mangerich A, Matic I, Matthews J, Moldovan GL, Moss J, Natoli G, Nielsen ML, Niepel M, Nolte F, Pascal J, Paschal BM, Pawlowski K, Poirier GG, Smith S, Timinszky G, Wang ZQ, Yelamos J, Yu X, Zaja R, Ziegler M (2021) ADP-ribosyltransferases, an update on function and nomenclature. FEBS J. https://doi.org/10.1111/febs.16142

  7. Suskiewicz MJ, Palazzo L, Hughes R, Ahel I (2021) Progress and outlook in studying the substrate specificities of PARPs and related enzymes. FEBS J 288(7):2131–2142. https://doi.org/10.1111/febs.15518

    Article  CAS  Google Scholar 

  8. Luscher B, Butepage M, Eckei L, Krieg S, Verheugd P, Shilton BH (2018) ADP-ribosylation, a multifaceted posttranslational modification involved in the control of cell physiology in health and disease. Chem Rev 118(3):1092–1136. https://doi.org/10.1021/acs.chemrev.7b00122

    Article  CAS  Google Scholar 

  9. Crawford K, Bonfiglio JJ, Mikoc A, Matic I, Ahel I (2018) Specificity of reversible ADP-ribosylation and regulation of cellular processes. Crit Rev Biochem Mol Biol 53(1):64–82. https://doi.org/10.1080/10409238.2017.1394265

    Article  CAS  Google Scholar 

  10. Palazzo L, Mikolcevic P, Mikoc A, Ahel I (2019) ADP-ribosylation signalling and human disease. Open Biol 9(4):190041. https://doi.org/10.1098/rsob.190041

    Article  CAS  Google Scholar 

  11. Schuller M, Ahel I (2022) Beyond protein modification: the rise of non-canonical ADP-ribosylation. Biochem J 479(4):463–477. https://doi.org/10.1042/BCJ20210280

    Article  CAS  Google Scholar 

  12. Groslambert J, Prokhorova E, Ahel I (2021) ADP-ribosylation of DNA and RNA. DNA Repair (Amst) 105:103144. https://doi.org/10.1016/j.dnarep.2021.103144

    Article  CAS  Google Scholar 

  13. Schuller M, Butler RE, Ariza A, Tromans-Coia C, Jankevicius G, Claridge TDW, Kendall SL, Goh S, Stewart GR, Ahel I (2021) Molecular basis for DarT ADP-ribosylation of a DNA base. Nature 596(7873):597–602. https://doi.org/10.1038/s41586-021-03825-4

    Article  CAS  Google Scholar 

  14. Cohen MS, Chang P (2018) Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat Chem Biol 14(3):236–243. https://doi.org/10.1038/nchembio.2568

    Article  CAS  Google Scholar 

  15. Rack JG, Morra R, Barkauskaite E, Kraehenbuehl R, Ariza A, Qu Y, Ortmayer M, Leidecker O, Cameron DR, Matic I, Peleg AY, Leys D, Traven A, Ahel I (2015) Identification of a class of protein ADP-ribosylating sirtuins in microbial pathogens. Mol Cell 59(2):309–320. https://doi.org/10.1016/j.molcel.2015.06.013

    Article  CAS  Google Scholar 

  16. Aravind L, Zhang D, de Souza RF, Anand S, Iyer LM (2015) The natural history of ADP-ribosyltransferases and the ADP-ribosylation system. Curr Top Microbiol Immunol 384:3–32. https://doi.org/10.1007/82_2014_414

    Article  CAS  Google Scholar 

  17. Yoshida T, Tsuge H (2021) Common mechanism for target specificity of protein- and DNA-targeting ADP-ribosyltransferases. Toxins (Basel) 13(1). https://doi.org/10.3390/toxins13010040

  18. Rack JGM, Palazzo L, Ahel I (2020) (ADP-ribosyl)hydrolases: structure, function, and biology. Genes Dev 34(5-6):263–284. https://doi.org/10.1101/gad.334631.119

    Article  CAS  Google Scholar 

  19. Bilokapic S, Suskiewicz MJ, Ahel I, Halic M (2020) Bridging of DNA breaks activates PARP2-HPF1 to modify chromatin. Nature 585(7826):609–613. https://doi.org/10.1038/s41586-020-2725-7

    Article  CAS  Google Scholar 

  20. Suskiewicz MJ, Zobel F, Ogden TEH, Fontana P, Ariza A, Yang JC, Zhu K, Bracken L, Hawthorne WJ, Ahel D, Neuhaus D, Ahel I (2020) HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Nature 579(7800):598–602. https://doi.org/10.1038/s41586-020-2013-6

    Article  CAS  Google Scholar 

  21. Ueda K, Hayaishi O (1985) ADP-ribosylation. Annu Rev Biochem 54:73–100. https://doi.org/10.1146/annurev.bi.54.070185.000445

    Article  CAS  Google Scholar 

  22. Prokhorova E, Agnew T, Wondisford AR, Tellier M, Kaminski N, Beijer D, Holder J, Groslambert J, Suskiewicz MJ, Zhu K, Reber JM, Krassnig SC, Palazzo L, Murphy S, Nielsen ML, Mangerich A, Ahel D, Baets J, O'Sullivan RJ, Ahel I (2021) Unrestrained poly-ADP-ribosylation provides insights into chromatin regulation and human disease. Mol Cell 81((12):2640–2655 e2648. https://doi.org/10.1016/j.molcel.2021.04.028

    Article  CAS  Google Scholar 

  23. Jankevicius G, Ariza A, Ahel M, Ahel I (2016) The toxin-antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA. Mol Cell 64(6):1109–1116. https://doi.org/10.1016/j.molcel.2016.11.014

    Article  CAS  Google Scholar 

  24. Lawaree E, Jankevicius G, Cooper C, Ahel I, Uphoff S, Tang CM (2020) DNA ADP-ribosylation stalls replication and is reversed by RecF-mediated homologous recombination and nucleotide excision repair. Cell Rep 30(5):1373–1384 e1374. https://doi.org/10.1016/j.celrep.2020.01.014

    Article  CAS  Google Scholar 

  25. LeRoux M, Srikant S, Teodoro GIC, Zhang T, Littlehale ML, Doron S, Badiee M, Leung AKL, Sorek R, Laub MT (2022) The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA. Nat Microbiol 7(7):1028–1040. https://doi.org/10.1038/s41564-022-01153-5

    Article  CAS  Google Scholar 

  26. Rack JG, Perina D, Ahel I (2016) Macrodomains: structure, function, evolution, and catalytic activities. Annu Rev Biochem 85:431–454. https://doi.org/10.1146/annurev-biochem-060815-014935

    Article  CAS  Google Scholar 

  27. Rack JGM, Liu Q, Zorzini V, Voorneveld J, Ariza A, Honarmand Ebrahimi K, Reber JM, Krassnig SC, Ahel D, van der Marel GA, Mangerich A, McCullagh JSO, Filippov DV, Ahel I (2021) Mechanistic insights into the three steps of poly(ADP-ribosylation) reversal. Nat Commun 12(1):4581. https://doi.org/10.1038/s41467-021-24723-3

    Article  CAS  Google Scholar 

  28. Alvarez-Gonzalez R, Althaus FR (1989) Poly(ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents. Mutat Res 218(2):67–74. https://doi.org/10.1016/0921-8777(89)90012-8

    Article  CAS  Google Scholar 

  29. Fontana P, Bonfiglio JJ, Palazzo L, Bartlett E, Matic I, Ahel I (2017) Serine ADP-ribosylation reversal by the hydrolase ARH3. Elife 6. https://doi.org/10.7554/eLife.28533

  30. Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P, Dixon N, Ahel M, Leys D, Ahel I (2011) The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477(7366):616–620. https://doi.org/10.1038/nature10404

    Article  CAS  Google Scholar 

  31. Mashimo M, Kato J, Moss J (2014) Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases. DNA Repair (Amst) 23:88–94. https://doi.org/10.1016/j.dnarep.2014.03.005

    Article  CAS  Google Scholar 

  32. Rack JGM, Ariza A, Drown BS, Henfrey C, Bartlett E, Shirai T, Hergenrother PJ, Ahel I (2018) (ADP-ribosyl)hydrolases: structural basis for differential substrate recognition and inhibition. Cell Chem Biol 25(12):1533–1546 e1512. https://doi.org/10.1016/j.chembiol.2018.11.001

    Article  CAS  Google Scholar 

  33. Palazzo L, Daniels CM, Nettleship JE, Rahman N, McPherson RL, Ong SE, Kato K, Nureki O, Leung AK, Ahel I (2016) ENPP1 processes protein ADP-ribosylation in vitro. FEBS J 283(18):3371–3388. https://doi.org/10.1111/febs.13811

    Article  CAS  Google Scholar 

  34. Palazzo L, Thomas B, Jemth AS, Colby T, Leidecker O, Feijs KL, Zaja R, Loseva O, Puigvert JC, Matic I, Helleday T, Ahel I (2015) Processing of protein ADP-ribosylation by Nudix hydrolases. Biochem J 468(2):293–301. https://doi.org/10.1042/BJ20141554

    Article  CAS  Google Scholar 

  35. Hayaishi O, Ueda K (1977) Poly(ADP-ribose) and ADP-ribosylation of proteins. Annu Rev Biochem 46:95–116. https://doi.org/10.1146/annurev.bi.46.070177.000523

    Article  CAS  Google Scholar 

  36. Carreras-Puigvert J, Zitnik M, Jemth AS, Carter M, Unterlass JE, Hallstrom B, Loseva O, Karem Z, Calderon-Montano JM, Lindskog C, Edqvist PH, Matuszewski DJ, Ait Blal H, Berntsson RPA, Haggblad M, Martens U, Studham M, Lundgren B, Wahlby C, Sonnhammer ELL, Lundberg E, Stenmark P, Zupan B, Helleday T (2017) A comprehensive structural, biochemical and biological profiling of the human NUDIX hydrolase family. Nat Commun 8(1):1541. https://doi.org/10.1038/s41467-017-01642-w

    Article  CAS  Google Scholar 

  37. Grudzien-Nogalska E, Wu Y, Jiao X, Cui H, Mateyak MK, Hart RP, Tong L, Kiledjian M (2019) Structural and mechanistic basis of mammalian Nudt12 RNA deNADding. Nat Chem Biol 15(6):575–582. https://doi.org/10.1038/s41589-019-0293-7

    Article  CAS  Google Scholar 

  38. Wu H, Li L, Chen KM, Homolka D, Gos P, Fleury-Olela F, McCarthy AA, Pillai RS (2019) Decapping enzyme NUDT12 partners with BLMH for cytoplasmic surveillance of NAD-capped RNAs. Cell Rep 29(13):4422–4434 e4413. https://doi.org/10.1016/j.celrep.2019.11.108

    Article  CAS  Google Scholar 

  39. Abdelraheim SR, Spiller DG, McLennan AG (2003) Mammalian NADH diphosphatases of the Nudix family: cloning and characterization of the human peroxisomal NUDT12 protein. Biochem J 374(Pt 2):329–335. https://doi.org/10.1042/BJ20030441

    Article  CAS  Google Scholar 

  40. Seman M, Adriouch S, Haag F, Koch-Nolte F (2004) Ecto-ADP-ribosyltransferases (ARTs): emerging actors in cell communication and signaling. Curr Med Chem 11(7):857–872. https://doi.org/10.2174/0929867043455611

    Article  CAS  Google Scholar 

  41. Hesse J, Rosse MK, Steckel B, Blank-Landeshammer B, Idel S, Reinders Y, Sickmann A, Strater N, Schrader J (2022) Mono-ADP-ribosylation sites of human CD73 inhibit its adenosine-generating enzymatic activity. Purinergic Signal 18(1):115–121. https://doi.org/10.1007/s11302-021-09832-4

    Article  CAS  Google Scholar 

  42. Bonfiglio JJ, Fontana P, Zhang Q, Colby T, Gibbs-Seymour I, Atanassov I, Bartlett E, Zaja R, Ahel I, Matic I (2017) Serine ADP-ribosylation depends on HPF1. Mol Cell 65(5):932–940 e936. https://doi.org/10.1016/j.molcel.2017.01.003

    Article  CAS  Google Scholar 

  43. Bonfiglio JJ, Leidecker O, Dauben H, Longarini EJ, Colby T, San Segundo-Acosta P, Perez KA, Matic I (2020) An HPF1/PARP1-based chemical biology strategy for exploring ADP-ribosylation. Cell 183(4):1086–1102 e1023. https://doi.org/10.1016/j.cell.2020.09.055

    Article  CAS  Google Scholar 

  44. Depaix A, Kowalska J (2019) NAD analogs in aid of chemical biology and medicinal chemistry. Molecules 24(22). https://doi.org/10.3390/molecules24224187

  45. Gibson BA, Conrad LB, Huang D, Kraus WL (2017) Generation and characterization of recombinant antibody-like ADP-ribose binding proteins. Biochemistry 56(48):6305–6316. https://doi.org/10.1021/acs.biochem.7b00670

    Article  CAS  Google Scholar 

  46. Leidecker O, Bonfiglio JJ, Colby T, Zhang Q, Atanassov I, Zaja R, Palazzo L, Stockum A, Ahel I, Matic I (2016) Serine is a new target residue for endogenous ADP-ribosylation on histones. Nat Chem Biol 12(12):998–1000. https://doi.org/10.1038/nchembio.2180

    Article  CAS  Google Scholar 

  47. Hendriks IA, Buch-Larsen SC, Prokhorova E, Elsborg JD, Rebak A, Zhu K, Ahel D, Lukas C, Ahel I, Nielsen ML (2021) The regulatory landscape of the human HPF1- and ARH3-dependent ADP-ribosylome. Nat Commun 12(1):5893. https://doi.org/10.1038/s41467-021-26172-4

    Article  CAS  Google Scholar 

  48. Challa S, Stokes MS, Kraus WL (2021) MARTs and MARylation in the cytosol: biological functions, mechanisms of action, and therapeutic potential. Cells 10(2):doi:10.3390/cells10020313

    Article  Google Scholar 

  49. Fu W, Yao H, Butepage M, Zhao Q, Luscher B, Li J (2021) The search for inhibitors of macrodomains for targeting the readers and erasers of mono-ADP-ribosylation. Drug Discov Today 26(11):2547–2558. https://doi.org/10.1016/j.drudis.2021.05.007

    Article  CAS  Google Scholar 

  50. O’Sullivan J, Tedim Ferreira M, Gagne JP, Sharma AK, Hendzel MJ, Masson JY, Poirier GG (2019) Emerging roles of eraser enzymes in the dynamic control of protein ADP-ribosylation. Nat Commun 10(1):1182. https://doi.org/10.1038/s41467-019-08859-x

    Article  CAS  Google Scholar 

  51. Rack JGM, Zorzini V, Zhu Z, Schuller M, Ahel D, Ahel I (2020) Viral macrodomains: a structural and evolutionary assessment of the pharmacological potential. Open Biol 10(11):200237. https://doi.org/10.1098/rsob.200237

    Article  CAS  Google Scholar 

  52. Voorneveld J, Rack JGM, Ahel I, Overkleeft HS, van der Marel GA, Filippov DV (2018) Synthetic alpha- and beta-Ser-ADP-ribosylated peptides reveal alpha-Ser-ADPr as the native epimer. Org Lett 20(13):4140–4143. https://doi.org/10.1021/acs.orglett.8b01742

    Article  CAS  Google Scholar 

  53. Minnee H, Rack JGM, van der Marel GA, Overkleeft HS, Codee JDC, Ahel I, Filippov DV (2022) Mimetics of ADP-ribosylated histidine through copper(I)-catalyzed click chemistry. Org Lett. https://doi.org/10.1021/acs.orglett.2c01300

  54. Voorneveld J, Rack JGM, van Gijlswijk L, Meeuwenoord NJ, Liu Q, Overkleeft HS, van der Marel GA, Ahel I, Filippov DV (2021) Molecular tools for the study of ADP-ribosylation: a unified and versatile method to synthesise native mono-ADP-ribosylated peptides. Chemistry 27(41):10621–10627. https://doi.org/10.1002/chem.202100337

    Article  CAS  Google Scholar 

  55. Kasson S, Dharmapriya N, Kim IK (2021) Selective monitoring of the protein-free ADP-ribose released by ADP-ribosylation reversal enzymes. PLoS One 16(6):e0254022. https://doi.org/10.1371/journal.pone.0254022

    Article  CAS  Google Scholar 

  56. Dasovich M, Zhuo J, Goodman JA, Thomas A, McPherson RL, Jayabalan AK, Busa VF, Cheng SJ, Murphy BA, Redinger KR, Alhammad YMO, Fehr AR, Tsukamoto T, Slusher BS, Bosch J, Wei H, Leung AKL (2022) High-throughput activity assay for screening inhibitors of the SARS-CoV-2 Mac1 macrodomain. ACS Chem Biol 17(1):17–23. https://doi.org/10.1021/acschembio.1c00721

    Article  CAS  Google Scholar 

  57. Gad H, Koolmeister T, Jemth AS, Eshtad S, Jacques SA, Strom CE, Svensson LM, Schultz N, Lundback T, Einarsdottir BO, Saleh A, Gokturk C, Baranczewski P, Svensson R, Berntsson RP, Gustafsson R, Stromberg K, Sanjiv K, Jacques-Cordonnier MC, Desroses M, Gustavsson AL, Olofsson R, Johansson F, Homan EJ, Loseva O, Brautigam L, Johansson L, Hoglund A, Hagenkort A, Pham T, Altun M, Gaugaz FZ, Vikingsson S, Evers B, Henriksson M, Vallin KS, Wallner OA, Hammarstrom LG, Wiita E, Almlof I, Kalderen C, Axelsson H, Djureinovic T, Puigvert JC, Haggblad M, Jeppsson F, Martens U, Lundin C, Lundgren B, Granelli I, Jensen AJ, Artursson P, Nilsson JA, Stenmark P, Scobie M, Berglund UW, Helleday T (2014) MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature 508(7495):215–221. https://doi.org/10.1038/nature13181

    Article  CAS  Google Scholar 

  58. Dunn CA, O'Handley SF, Frick DN, Bessman MJ (1999) Studies on the ADP-ribose pyrophosphatase subfamily of the nudix hydrolases and tentative identification of trgB, a gene associated with tellurite resistance. J Biol Chem 274(45):32318–32324. https://doi.org/10.1074/jbc.274.45.32318

    Article  CAS  Google Scholar 

  59. Sharifi R, Morra R, Appel CD, Tallis M, Chioza B, Jankevicius G, Simpson MA, Matic I, Ozkan E, Golia B, Schellenberg MJ, Weston R, Williams JG, Rossi MN, Galehdari H, Krahn J, Wan A, Trembath RC, Crosby AH, Ahel D, Hay R, Ladurner AG, Timinszky G, Williams RS, Ahel I (2013) Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J 32(9):1225–1237. https://doi.org/10.1038/emboj.2013.51

    Article  CAS  Google Scholar 

  60. Gibbs-Seymour I, Fontana P, Rack JGM, Ahel I (2016) HPF1/C4orf27 Is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity. Mol Cell 62(3):432–442. https://doi.org/10.1016/j.molcel.2016.03.008

    Article  CAS  Google Scholar 

  61. Langelier MF, Planck JL, Servent KM, Pascal JM (2011) Purification of human PARP-1 and PARP-1 domains from Escherichia coli for structural and biochemical analysis. Methods Mol Biol 780:209–226. https://doi.org/10.1007/978-1-61779-270-0_13

    Article  CAS  Google Scholar 

  62. Kistemaker HA, Nardozza AP, Overkleeft HS, van der Marel GA, Ladurner AG, Filippov DV (2016) Synthesis and macrodomain binding of mono-ADP-ribosylated peptides. Angew Chem Int Ed Engl 55(36):10634–10638. https://doi.org/10.1002/anie.201604058

    Article  CAS  Google Scholar 

  63. Bartlett E, Bonfiglio JJ, Prokhorova E, Colby T, Zobel F, Ahel I, Matic I (2018) Interplay of histone marks with serine ADP-ribosylation. Cell Rep 24(13):3488–3502 e3485. https://doi.org/10.1016/j.celrep.2018.08.092

    Article  CAS  Google Scholar 

  64. Nielsen PE (2004) Peptide nucleic acids : protocols and applications, 2nd edn. Horizon Scientific, Wymondham

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dmitri Filippov (Leiden Institute of Chemistry, University of Leiden, the Netherlands) for providing chemical probes that established this method, Marion Schuller (Sir William Dunn School of Pathology, University of Oxford, UK) for advice and technical assistance in establishing this method for the study of DNA modifications, and Roberto Raggiaschi and Rebecca Smith for critical comments on the manuscript. Work in the laboratory of I.A. is supported by the Wellcome Trust (grant number 210634), BBSRC (BB/R007195/1), Ovarian Cancer Research Alliance (Collaborative Research Development Grant #813369), and Cancer Research UK (C35050/A22284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Gregor Matthias Rack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rack, J.G.M., Ahel, I. (2023). A Simple Method to Study ADP-Ribosylation Reversal: From Function to Drug Discovery. In: Tulin, A.V. (eds) Poly(ADP-Ribose) Polymerase. Methods in Molecular Biology, vol 2609. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2891-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2891-1_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2890-4

  • Online ISBN: 978-1-0716-2891-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics