Skip to main content

Time-Lapse Imaging and Morphometric Analysis of Tracheal Development in Drosophila

  • Protocol
  • First Online:
Cell Migration in Three Dimensions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2608))

Abstract

Detailed and quantitative analyses of the cellular events underlying the formation of specific organs or tissues is essential to understand the general mechanisms of morphogenesis and pattern formation. Observation of live tissues or whole-mount fixed specimens has emerged as the method of choice for identifying and quantifying specific cellular and tissular structures within the organism. In both cases, cell and subcellular structure identification and good quality image acquisition for these analyses are essential. Many markers for live imaging and fixed tissue are now available for detecting cell membranes, subcellular structures, and extracellular structures like the extracellular matrix (ECM). Combination of live imaging and analysis of fixed tissue is ideal to obtain a general and detailed picture of the events underlying embryonic development. By applying morphometric methods to both approaches, we can, in addition, obtain a quantitative evaluation of the specific parameters under investigation in morphogenetic and cell biological studies. In this chapter, we focus on the development of the tracheal system of Drosophila melanogaster, which provides an ideal paradigm to understand the formation of branched tubular organs. We describe the most used methods of imaging and morphometric analysis in tubulogenesis using mainly (but not exclusively) examples from embryonic development. We cover embryo preparation for fixed and live analysis of tubulogenesis, together with methods to visualize larval tracheal terminal cell branching and lumen formation. Finally, we describe morphometric analysis and quantification methods using fluorescent images of tracheal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hales KG, Korey CA, Larracuente AM, Roberts DM (2015) Genetics on the Fly: a primer on the drosophila model system. Genetics 201(3):815–842. https://doi.org/10.1534/genetics.115.183392

    Article  CAS  Google Scholar 

  2. Loganathan R, Cheng YL, Andrew DJ (2016) Organogenesis of the drosophila respiratory system, vol 12. Springer, Cham, pp 151–211

    Google Scholar 

  3. Ghabrial A, Luschnig S, Metzstein M, Krasnow M (2003) Branching morphogenesis of the drosophila tracheal system. Annu Rev Cell Dev Biol 19:623–647. https://doi.org/10.1146/annurev.cellbio.19.031403.160043

    Article  CAS  Google Scholar 

  4. Hayashi S, Kondo T (2018) Development and function of the drosophila tracheal system. Genetics 209(2):367–380. https://doi.org/10.1534/genetics.117.300167

    Article  CAS  Google Scholar 

  5. Hayashi S, Dong B (2017) Shape and geometry control of the drosophila tracheal tubule. Development, growth &amp. Differentiation 59(1):4–11. https://doi.org/10.1111/dgd.12336

    Article  Google Scholar 

  6. Tsarouhas V, Senti K-A, Jayaram SA, Tiklová K, Hemphälä J, Adler J et al (2007) Sequential pulses of apical epithelial secretion and endocytosis drive airway maturation in drosophila. Dev Cell 13(2):214–225. https://doi.org/10.1016/j.devcel.2007.06.008

    Article  CAS  Google Scholar 

  7. Behr M, Wingen C, Wolf C, Schuh R, Hoch M (2007) Wurst is essential for airway clearance and respiratory-tube size control. Nat Cell Biol 9(7):847–853. https://doi.org/10.1038/ncb1611

    Article  CAS  Google Scholar 

  8. FOrster D, Armbruster K, Luschnig S (2010) Sec24-dependent secretion drives cell-autonomous expansion of tracheal tubes in drosophila. Curr Biol 20(1):62–68. https://doi.org/10.1016/j.cub.2009.11.062

    Article  CAS  Google Scholar 

  9. Grieder NC, Caussinus E, Parker DS, Cadigan K, Affolter M, Luschnig S (2008) γCOP is required for apical protein secretion and epithelial morphogenesis in Drosophila melanogaster. PLoS One 3(9):e3241. https://doi.org/10.1371/journal.pone.0003241.s006

    Article  Google Scholar 

  10. Jayaram SA, Senti K-A, Tiklová K, Tsarouhas V, Hemphälä J, Samakovlis C (2008) COPI vesicle transport is a common requirement for tube expansion in drosophila. PLoS One 3(4):e1964. https://doi.org/10.1371/journal.pone.0001964

    Article  CAS  Google Scholar 

  11. Araújo SJ, Aslam H, Tear G, Casanova J (2005) Mummy/cystic encodes an enzyme required for chitin and glycan synthesis, involved in trachea, embryonic cuticle and CNS development--analysis of its role in drosophila tracheal morphogenesis. Dev Biol 288(1):179–193. https://doi.org/10.1016/j.ydbio.2005.09.031

    Article  CAS  Google Scholar 

  12. Devine WP, Lubarsky B, Shaw K, Luschnig S, Messina L, Krasnow MA (2005) Requirement for chitin biosynthesis in epithelial tube morphogenesis. Proc Natl Acad Sci U S A 102(47):17014–17019

    Article  CAS  Google Scholar 

  13. Tonning A, Hemphälä J, Tång E, Nannmark U, Samakovlis C, Uv A (2005) A transient luminal chitinous matrix is required to model epithelial tube diameter in the Drosophila trachea. Dev Cell 9(3):423–430. https://doi.org/10.1016/j.devcel.2005.07.012

    Article  CAS  Google Scholar 

  14. Öztürk-Çolak A, Moussian B, Araujo S, Casanova J (2016) A feedback mechanism converts individual cell features into a supracellular ECM structure in Drosophila trachea. elife 5

    Google Scholar 

  15. Dong B, Hannezo E, Hayashi S (2014) Balance between apical membrane growth and luminal matrix resistance determines epithelial tubule shape. Cell Rep. https://doi.org/10.1016/j.celrep.2014.03.066

  16. Laprise P, Paul SM, Boulanger J, Robbins RM, Beitel GJ, Tepass U (2010) Epithelial polarity proteins regulate drosophila tracheal tube size in parallel to the luminal matrix pathway. Curr Biol 20(1):55–61. https://doi.org/10.1016/j.cub.2009.11.017

    Article  CAS  Google Scholar 

  17. Olivares-Castiñeira I, Llimargas M (2017) EGFR controls drosophila tracheal tube elongation by intracellular trafficking regulation. PLoS Genet 13(7):e1006882. https://doi.org/10.1371/journal.pgen.1006882

    Article  CAS  Google Scholar 

  18. Olivares-Castiñeira I, Llimargas M (2018) Anisotropic Crb accumulation, modulated by Src42A, is coupled to polarised epithelial tube growth in drosophila. PLoS Genet 14(11):e1007824. https://doi.org/10.1371/journal.pgen.1007824

    Article  CAS  Google Scholar 

  19. Förster D, Luschnig S (2012) Src42A-dependent polarized cell shape changes mediate epithelial tube elongation in drosophila. Nat Cell Biol 14(5):526–534. https://doi.org/10.1038/ncb2456

    Article  CAS  Google Scholar 

  20. Nelson KS, Khan Z, Molnár I, Mihály J, Kaschube M, Beitel GJ (2012) Drosophila Src regulates anisotropic apical surface growth to control epithelial tube size. Nat Cell Biol 14(5):518–525. https://doi.org/10.1038/ncb2467

    Article  CAS  Google Scholar 

  21. Schindelin JA-CI, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  Google Scholar 

  22. Shiga Y, Tanaka-Matakatsu M, Hayashi S (1996) A nuclear GFP/β-galactosidase fusion protein as a marker for morphogenesis in living Drosophila. Dev Growth Differ 38(1):99–106. https://doi.org/10.1046/j.1440-169X.1996.00012.x

    Article  CAS  Google Scholar 

  23. Kato K, Chihara T, Hayashi S (2004) Hedgehog and decapentaplegic instruct polarized growth of cell extensions in the Drosophila trachea. Development 131(21):5253–5261. https://doi.org/10.1242/dev.01404

    Article  CAS  Google Scholar 

  24. Ribeiro C, Neumann M, Affolter M (2004) Genetic control of cell intercalation during tracheal morphogenesis in drosophila. Curr Biol 14(24):2197–2207

    Article  CAS  Google Scholar 

  25. Kaltschmidt JA, Davidson CM, Brown NH, Brand AH (2000) Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nat Cell Biol 2(1):7–12. https://doi.org/10.1038/71323

    Article  CAS  Google Scholar 

  26. Gervais L, Casanova J (2010) In vivo coupling of cell elongation and lumen formation in a single cell. Curr Biol 20(4):359–366. https://doi.org/10.1016/j.cub.2009.12.043

    Article  CAS  Google Scholar 

  27. Gómez-Gálvez P, Vicente-Munuera P, Tagua A, Forja C, Castro AM, Letrán M et al (2018) Scutoids are a geometrical solution to three-dimensional packing of epithelia. Nat Commun 9(1):2960. https://doi.org/10.1038/s41467-018-05376-1. PMID – 30054479

    Article  CAS  Google Scholar 

  28. Uv A, Cantera R, Samakovlis C (2003) Drosophila tracheal morphogenesis: intricate cellular solutions to basic plumbing problems. Trends Cell Biol 13(6):301–309

    Article  CAS  Google Scholar 

  29. Yang R, Li E, Kwon Y-J, Mani M, Beitel GJ (2019) QuBiT: a quantitative tool for analyzing epithelial tubes reveals unexpected patterns of organization in the Drosophila trachea. Development 146(12). https://doi.org/10.1242/dev.172759

  30. Ricolo D, Araújo SJ (2020) Coordinated crosstalk between microtubules and actin by a spectraplakin regulates lumen formation and branching. elife 9:e61111. https://doi.org/10.7554/eLife.61111

    Article  CAS  Google Scholar 

  31. Ghabrial AS, Levi BP, Krasnow MA (2011) A systematic screen for tube morphogenesis and branching genes in the drosophila tracheal system. PLoS Genet 7(7):e1002087

    Article  CAS  Google Scholar 

  32. Meijering E, Jacob M, Sarria JCF, Steiner P, Hirling H, Unser M (2004) Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytom Part A 58A(2):167–176. https://doi.org/10.1002/cyto.a.20022. PMID – 15057970

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sofia J. Araújo or Marta Llimargas .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Movie 1

Tracheal time-lapse imaging. In vivo tracheal cell visualization during branch migration in two wild-type ganglionic branches (GBs) at embryonic stage 14/15. Time-lapse images of a wt embryo expressing btl-GAL4UAS-Src-GFP visualized from a ventral view. Images were acquired every min for the time specified (3 h and 20 min) over 50 μm (ZIP 4652 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Araújo, S.J., Llimargas, M. (2023). Time-Lapse Imaging and Morphometric Analysis of Tracheal Development in Drosophila. In: Margadant, C. (eds) Cell Migration in Three Dimensions. Methods in Molecular Biology, vol 2608. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2887-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2887-4_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2886-7

  • Online ISBN: 978-1-0716-2887-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics