Abstract
Over the past 20 years, high-throughput genomic assays have fundamentally changed how transposable elements (TEs) are studied. While short-read DNA sequencing has been at the heart of these efforts, novel technologies that generate longer reads are driving a shift in the field. Long-read sequencing now permits locus-specific approaches to locate individual TE insertions and understand their epigenetic and transcriptional regulation, while still profiling TE activity genome-wide. Here we provide detailed guidelines to implement Oxford Nanopore Technologies (ONT) sequencing to identify polymorphic TE insertions and profile TE epigenetic landscapes. Using human long interspersed element-1 (LINE-1, L1) as an example, we explain the procedures involved, including final visualization, and potential bottlenecks and pitfalls. ONT sequencing will be, in our view, a workhorse technology for the foreseeable future in the TE field.
Key words
- Transposable elements
- LINE-1
- Long-read sequencing
- Nanopore sequencing
- Epigenetics
- DNA methylation
- Mapping
- Sequencing
- Polymorphism
- Basecalling
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921. https://doi.org/10.1038/35057062
Cost G, Feng Q, Jacquier A, Boeke JD (2002) Human L1 element target-primed reverse transcription in vitro. EMBO J 21:5899–5910. https://doi.org/10.1093/emboj/cdf592
Symer DE, Connelly C, Szak ST et al (2002) Human L1 retrotransposition is associated with genetic instability in vivo. Cell 110:327–338. https://doi.org/10.1016/S0092-8674(02)00839-5
Castro-Diaz N, Ecco G, Coluccio A et al (2014) Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev 28:1397–1409. https://doi.org/10.1101/gad.241661.114
de la Rica L, Deniz Ö, Cheng KCL et al (2016) TET-dependent regulation of retrotransposable elements in mouse embryonic stem cells. Genome Biol 17:234–234. https://doi.org/10.1186/s13059-016-1096-8
Fadloun A, Le Gras S, Jost B et al (2013) Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA. Nat Struct Mol Biol 20:332–338. https://doi.org/10.1038/nsmb.2495
Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467. https://doi.org/10.1073/pnas.74.12.5463
Churko JM, Mantalas GL, Snyder MP, Wu JC (2013) Overview of high throughput sequencing technologies to elucidate molecular pathways in cardiovascular diseases. Circ Res 112:1613–1623. https://doi.org/10.1161/CIRCRESAHA.113.300939
Treangen TJ, Salzberg SL (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46. https://doi.org/10.1038/nrg3117
Lanciano S, Cristofari G (2020) Measuring and interpreting transposable element expression. Nat Rev Genet 21:721–736. https://doi.org/10.1038/s41576-020-0251-y
Ewing AD (2015) Transposable element detection from whole genome sequence data. Mob DNA 6:1–9
Scott EC, Gardner EJ, Masood A et al (2016) A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Res 26:745–755. https://doi.org/10.1101/gr.201814.115
Berrens RV, Yang A, Laumer CE et al (2021) Locus-specific expression of transposable elements in single cells with CELLO-seq. Nat Biotechnol 40:546. https://doi.org/10.1038/s41587-021-01093-1
Faulkner GJ, Garcia-Perez JL (2017) L1 mosaicism in mammals: extent, effects, and evolution. Trends Genet 33:802–816
Faulkner GJ, Billon V (2018) L1 retrotransposition in the soma: a field jumping ahead. Mob DNA 9:1–18
Sanchez-Luque FJ, Kempen MJHC, Gerdes P et al (2019) LINE-1 evasion of epigenetic repression in humans. Mol Cell 75:590–604.e12. https://doi.org/10.1016/j.molcel.2019.05.024
Ewing AD, Smits N, Sanchez-Luque FJ et al (2020) Nanopore sequencing enables comprehensive transposable element epigenomic profiling. Mol Cell 80:915–928.e5. https://doi.org/10.1016/j.molcel.2020.10.024
Zhou W, Emery SB, Flasch DA et al (2020) Identification and characterization of occult human-specific LINE-1 insertions using long-read sequencing technology. Nucleic Acids Res 48:1146–1163. https://doi.org/10.1093/nar/gkz1173
Deininger P, Morales ME, White TB et al (2017) A comprehensive approach to expression of L1 loci. Nucleic Acids Res 45:e31
Gouil Q, Keniry A (2019) Latest techniques to study DNA methylation. Essays Biochem 63:639–648. https://doi.org/10.1042/EBC20190027
Logsdon GA, Vollger MR, Eichler EE (2020) Long-read human genome sequencing and its applications. Nat Rev Genet 21:1–18
McDonald TL, Zhou W, Castro CP et al (2021) Cas9 targeted enrichment of mobile elements using nanopore sequencing. Nat Commun 12:3586. https://doi.org/10.1038/s41467-021-23918-y
Wang Y, Zhao Y, Bollas A et al (2021) Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol 39:1–18. https://doi.org/10.1038/s41587-021-01108-x
Siudeja K, van den Beek M, Riddiford N et al (2021) Unraveling the features of somatic transposition in the Drosophila intestine. EMBO J 40:e106388. https://doi.org/10.15252/embj.2020106388
Deamer D, Akeson M, Branton D (2016) Three decades of nanopore sequencing. Nat Biotechnol 34:518–524. https://doi.org/10.1038/nbt.3423
Shendure J, Balasubramanian S, Church GM et al (2017) DNA sequencing at 40: past, present and future. Nature 550:345–353. https://doi.org/10.1038/nature24286
Smits N, Rasmussen J, Bodea GO et al (2021) No evidence of human genome integration of SARS-CoV-2 found by long-read DNA sequencing. Cell Rep 36:109530. https://doi.org/10.1016/j.celrep.2021.109530
Requirements PIIT PromethION P24/P48 IT requirements. https://community.nanoporetech.com/requirements_documents/promethion-it-reqs.pdf
Miniconda – conda documentation. https://docs.conda.io/en/latest/miniconda.html. Accessed 4 Mar 2022
Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100
Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26. https://doi.org/10.1038/nbt.1754
Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340
Greenberg MVC, Bourc’his D (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20:590–607. https://doi.org/10.1038/s41580-019-0159-6
Liu Y, Rosikiewicz W, Pan Z et al (2021) DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human epigenome-wide evaluation. Genome Biol 22:1–33. https://doi.org/10.1186/s13059-021-02510-z
Gamaarachchi H, Lam CW, Jayatilaka G et al (2020) GPU accelerated adaptive banded event alignment for rapid comparative nanopore signal analysis. BMC Bioinformatics 21:343. https://doi.org/10.1186/s12859-020-03697-x
Simpson JT, Workman RE, Zuzarte PC et al (2017) Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 14:407–410. https://doi.org/10.1038/nmeth.4184
Su S, Gouil Q, Blewitt ME et al (2021) NanoMethViz: an R/Bioconductor package for visualizing long-read methylation data. PLoS Comput Biol 17:e1009524. https://doi.org/10.1371/journal.pcbi.1009524
De Coster W, Stovner EB, Strazisar M (2020) Methplotlib: analysis of modified nucleotides from nanopore sequencing. Bioinformatics 36:3236–3238. https://doi.org/10.1093/bioinformatics/btaa093
Lee I, Razaghi R, Gilpatrick T et al (2020) Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nat Methods 17:1191–1199. https://doi.org/10.1038/s41592-020-01000-7
Gamaarachchi H, Samarakoon H, Jenner SP et al (2022) Fast nanopore sequencing data analysis with SLOW5. Nat Biotechnol 40:1026–1029. https://doi.org/10.1038/s41587-021-01147-4
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Smits, N., Faulkner, G.J. (2023). Nanopore Sequencing to Identify Transposable Element Insertions and Their Epigenetic Modifications. In: Branco, M.R., de Mendoza Soler, A. (eds) Transposable Elements. Methods in Molecular Biology, vol 2607. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2883-6_9
Download citation
DOI: https://doi.org/10.1007/978-1-0716-2883-6_9
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-2882-9
Online ISBN: 978-1-0716-2883-6
eBook Packages: Springer Protocols