Skip to main content

Quantification of LINE-1 RNA Expression from Bulk RNA-seq Using L1EM

Part of the Methods in Molecular Biology book series (MIMB,volume 2607)

Abstract

LINE-1 retrotransposons have the potential to cause DNA damage, contribute to genome instability, and induce an interferon response. Thus, accurate measurements of their expression, especially in disease contexts where genome instability and the interferon response are relevant, are of particular importance. Illumina-based bulk RNA sequencing remains the most abundant datatype for measuring gene expression. However, “active” expression from its own internal promoter is only one source of LINE-1 aligning reads in an RNA-seq experiment. With about half a million LINE-1 sequences scattered throughout the genome, many are incorporated into other transcripts that have nothing to do with LINE-1 activity. We call this “passive” co-transcription. Here we will describe how to use L1EM, a computational method that separates active from passive LINE-1 expression at the locus-specific level.

Key words

  • Transposable elements
  • LINE-1
  • RNA-seq
  • L1
  • Short reads
  • Co-transcription

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Burns KH, Boeke JD (2012) Human transposon tectonics. Cell 149:740–752

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang F, Wang PJ (2016) Multiple LINEs of retrotransposon silencing mechanisms in the mammalian germline. Semin Cell Dev Biol 59:118–125

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  3. McKerrow W, Wang X, Mendez-Dorantes C et al (2022) LINE-1 expression in cancer correlates with p53 mutation, copy number alteration, and S phase checkpoint. Proc Natl Acad Sci U S A 119:e2115999119

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rodić N, Sharma R, Sharma R et al (2014) Long interspersed element-1 protein expression is a hallmark of many human cancers. Am J Pathol 184:1280–1286

    CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Ardeljan D, Taylor MS, Ting DT et al (2017) The human LINE-1 retrotransposon: an emerging biomarker of neoplasia. Clin Chem 63:816–822

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rodriguez-Martin B, Alvarez EG, Baez-Ortega A et al (2020) Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet 52:306–319

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gorbunova V, Seluanov A, Mita P et al (2021) The role of retrotransposable elements in ageing and age-associated diseases. Nature 596:43–53

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang X, Zhang R, Yu J (2020) New understanding of the relevant role of LINE-1 retrotransposition in human disease and immune modulation. Front Cell Dev Biol 8

    Google Scholar 

  9. Gasior SL, Wakeman TP, Xu B et al (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 357:1383–1393

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ardeljan D, Steranka JP, Liu C et al (2020) Cell fitness screens reveal a conflict between LINE-1 retrotransposition and DNA replication. Nat Struct Mol Biol 27:168–178

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mita P, Sun X, Fenyö D et al (2020) BRCA1 and S phase DNA repair pathways restrict LINE-1 retrotransposition in human cells. Nat Struct Mol Biol 27:179–191

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cecco MD, Ito T, Petrashen AP et al (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:73

    CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Tunbak H, Enriquez-Gasca R, Tie CHC et al (2020) The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s. Nat Commun 11:5387

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lanciano S, Cristofari G (2020) Measuring and interpreting transposable element expression. Nat Rev Genet 21:721–736

    CrossRef  CAS  PubMed  Google Scholar 

  15. Navarro FC, Hoops J, Bellfy L et al (2019) TeXP: deconvolving the effects of pervasive and autonomous transcription of transposable elements. PLoS Comput Biol 15:e1007293

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deininger P, Morales ME, White TB et al (2017) A comprehensive approach to expression of L1 loci. Nucleic Acids Res 45:e31

    CrossRef  PubMed  Google Scholar 

  17. McKerrow W, Fenyö D (2020) L1EM: a tool for accurate locus specific LINE-1 RNA quantification. Bioinformatics 36:1167–1173

    CrossRef  CAS  PubMed  Google Scholar 

  18. Jin Y, Tam OH, Paniagua E et al (2015) TEtranscripts: a package for including transposable elements in differential expression analysis of RNA-seq datasets. Bioinformatics 31:3593–3599

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jeong H-H, Yalamanchili HK, Guo C et al (2018) An ultra-fast and scalable quantification pipeline for transposable elements from next generation sequencing data. Pac Symp Biocomput 23:168–179

    PubMed  Google Scholar 

  20. Yang WR, Ardeljan D, Pacyna CN et al (2019) SQuIRE reveals locus-specific regulation of interspersed repeat expression. Nucleic Acids Res 47:e27

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  21. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    CrossRef  CAS  PubMed  Google Scholar 

  23. Stow EC, Kaul T, deHaro DL et al (2021) Organ-, sex- and age-dependent patterns of endogenous L1 mRNA expression at a single locus resolution. Nucleic Acids Res 49:5813–5831

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaul T, Morales ME, Smither E et al (2019) RNA next-generation sequencing and a bioinformatics pipeline to identify expressed LINE-1s at the locus-specific level. J Vis Exp:e59771

    Google Scholar 

  25. Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karolchik D, Baertsch R, Diekhans M et al (2003) The UCSC genome browser database. Nucleic Acids Res 31:51–54

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

McKerrow, W. (2023). Quantification of LINE-1 RNA Expression from Bulk RNA-seq Using L1EM. In: Branco, M.R., de Mendoza Soler, A. (eds) Transposable Elements. Methods in Molecular Biology, vol 2607. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2883-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2883-6_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2882-9

  • Online ISBN: 978-1-0716-2883-6

  • eBook Packages: Springer Protocols