Abstract
This protocol describes methods to design, assemble, and validate tools for targeted activation or repression of single-copy and multi-copy genes, including repetitive and transposable elements. It uses transcription activator-like effector (TALE) technology combined with VP64 activator or Kruppel-associated box (KRAB) repressor, both of which are potent transcriptional regulators that modify the epigenetic state of endogenous DNA loci. This protocol has been successfully used to simultaneously modify expression patterns of thousands of LINE-1 transposable elements and satellite repeats, both in cell culture model systems and in preimplantation mouse embryos.
Key words
- Transcriptional repression/activation
- TALE technology
- Epigenetic modifications
- Dual luciferase assay
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Gregory TR (2005) Synergy between sequence and size in large-scale genomics. Nat Rev Genet 69(6):699–708. https://doi.org/10.1038/nrg1674
Bourque G, Burns KH, Gehring M et al (2018) Ten things you should know about transposable elements. Genome Biol 19:199. https://doi.org/10.1186/s13059-018-1577-z
Gerdes P, Richardson SR, Mager DL, Faulkner GJ (2016) Transposable elements in the mammalian embryo: pioneers surviving through stealth and service. Genome Biol 17:100. https://doi.org/10.1186/s13059-016-0965-5
Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM (2014) TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Nat 6:19. https://doi.org/10.32607/20758251-2014-6-3-19-40
Kungulovski G, Jeltsch A (2016) Epigenome editing: state of the art, concepts, and perspectives. Trends Genet 32:101–113. https://doi.org/10.1016/J.TIG.2015.12.001
Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501. https://doi.org/10.1126/SCIENCE.1178817
Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512. https://doi.org/10.1126/SCIENCE.1178811
Mendenhall EM, Williamson KE, Reyon D et al (2013) Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 31:1133–1136. https://doi.org/10.1038/NBT.2701
Maeder ML, Angstman JF, Richardson ME et al (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31:1137–1142. https://doi.org/10.1038/NBT.2726
Cong L, Zhou R, Kuo YC et al (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3. https://doi.org/10.1038/NCOMMS1962
Morbitzer R, Römer P, Boch J, Lahaye T (2010) Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci U S A 107:21617–21622. https://doi.org/10.1073/PNAS.1013133107
Jachowicz JW, Bing X, Pontabry J et al (2017) Activation of LINE-1 after fertilisation regulates global chromatin accessibility. Nat Genet 49:1502–1510. https://doi.org/10.1038/ng.3945
Miyanari Y, Ziegler-Birling C, Torres-Padilla M-E (2013) Live visualization of chromatin dynamics with fluorescent TALEs. https://doi.org/10.1038/nsmb.2680
Jain S, Shukla S, Yang C et al (2021) TALEN outperforms Cas9 in editing heterochromatin target sites. Nat Commun 121(12):1–10. https://doi.org/10.1038/s41467-020-20672-5
Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4:e5553. https://doi.org/10.1371/JOURNAL.PONE.0005553
Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39. https://doi.org/10.1093/nar/gkr218
Quinodoz SA, Jachowicz JW, Bhat P et al (2021) RNA promotes the formation of spatial compartments in the nucleus. Cell 184:5775–5790.e30. https://doi.org/10.1016/J.CELL.2021.10.014
Miyanari Y, Torres-Padilla M-E (2012) Control of ground-state pluripotency by allelic regulation of Nanog. Nature 483:470–473. https://doi.org/10.1038/nature10807
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Jachowicz, J.W. (2023). Epigenetic Manipulation of Transposable and Repetitive Elements. In: Branco, M.R., de Mendoza Soler, A. (eds) Transposable Elements. Methods in Molecular Biology, vol 2607. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2883-6_16
Download citation
DOI: https://doi.org/10.1007/978-1-0716-2883-6_16
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-2882-9
Online ISBN: 978-1-0716-2883-6
eBook Packages: Springer Protocols