Skip to main content

Epigenetic Manipulation of Transposable and Repetitive Elements

  • 1066 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2607)

Abstract

This protocol describes methods to design, assemble, and validate tools for targeted activation or repression of single-copy and multi-copy genes, including repetitive and transposable elements. It uses transcription activator-like effector (TALE) technology combined with VP64 activator or Kruppel-associated box (KRAB) repressor, both of which are potent transcriptional regulators that modify the epigenetic state of endogenous DNA loci. This protocol has been successfully used to simultaneously modify expression patterns of thousands of LINE-1 transposable elements and satellite repeats, both in cell culture model systems and in preimplantation mouse embryos.

Key words

  • Transcriptional repression/activation
  • TALE technology
  • Epigenetic modifications
  • Dual luciferase assay

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gregory TR (2005) Synergy between sequence and size in large-scale genomics. Nat Rev Genet 69(6):699–708. https://doi.org/10.1038/nrg1674

    CrossRef  Google Scholar 

  2. Bourque G, Burns KH, Gehring M et al (2018) Ten things you should know about transposable elements. Genome Biol 19:199. https://doi.org/10.1186/s13059-018-1577-z

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gerdes P, Richardson SR, Mager DL, Faulkner GJ (2016) Transposable elements in the mammalian embryo: pioneers surviving through stealth and service. Genome Biol 17:100. https://doi.org/10.1186/s13059-016-0965-5

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM (2014) TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Nat 6:19. https://doi.org/10.32607/20758251-2014-6-3-19-40

    CrossRef  CAS  Google Scholar 

  5. Kungulovski G, Jeltsch A (2016) Epigenome editing: state of the art, concepts, and perspectives. Trends Genet 32:101–113. https://doi.org/10.1016/J.TIG.2015.12.001

    CrossRef  CAS  PubMed  Google Scholar 

  6. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501. https://doi.org/10.1126/SCIENCE.1178817

    CrossRef  CAS  PubMed  Google Scholar 

  7. Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512. https://doi.org/10.1126/SCIENCE.1178811

    CrossRef  CAS  PubMed  Google Scholar 

  8. Mendenhall EM, Williamson KE, Reyon D et al (2013) Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 31:1133–1136. https://doi.org/10.1038/NBT.2701

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maeder ML, Angstman JF, Richardson ME et al (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31:1137–1142. https://doi.org/10.1038/NBT.2726

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cong L, Zhou R, Kuo YC et al (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3. https://doi.org/10.1038/NCOMMS1962

  11. Morbitzer R, Römer P, Boch J, Lahaye T (2010) Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci U S A 107:21617–21622. https://doi.org/10.1073/PNAS.1013133107

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jachowicz JW, Bing X, Pontabry J et al (2017) Activation of LINE-1 after fertilisation regulates global chromatin accessibility. Nat Genet 49:1502–1510. https://doi.org/10.1038/ng.3945

    CrossRef  CAS  PubMed  Google Scholar 

  13. Miyanari Y, Ziegler-Birling C, Torres-Padilla M-E (2013) Live visualization of chromatin dynamics with fluorescent TALEs. https://doi.org/10.1038/nsmb.2680

  14. Jain S, Shukla S, Yang C et al (2021) TALEN outperforms Cas9 in editing heterochromatin target sites. Nat Commun 121(12):1–10. https://doi.org/10.1038/s41467-020-20672-5

    CrossRef  CAS  Google Scholar 

  15. Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4:e5553. https://doi.org/10.1371/JOURNAL.PONE.0005553

    CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39. https://doi.org/10.1093/nar/gkr218

  17. Quinodoz SA, Jachowicz JW, Bhat P et al (2021) RNA promotes the formation of spatial compartments in the nucleus. Cell 184:5775–5790.e30. https://doi.org/10.1016/J.CELL.2021.10.014

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miyanari Y, Torres-Padilla M-E (2012) Control of ground-state pluripotency by allelic regulation of Nanog. Nature 483:470–473. https://doi.org/10.1038/nature10807

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna W. Jachowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jachowicz, J.W. (2023). Epigenetic Manipulation of Transposable and Repetitive Elements. In: Branco, M.R., de Mendoza Soler, A. (eds) Transposable Elements. Methods in Molecular Biology, vol 2607. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2883-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2883-6_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2882-9

  • Online ISBN: 978-1-0716-2883-6

  • eBook Packages: Springer Protocols