Skip to main content

Inferring Protein-DNA Binding Profiles at Interspersed Repeats Using HiChIP and PAtChER

  • Protocol
  • First Online:
Transposable Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2607))

Abstract

Alignment of short-read sequencing data to interspersed genomic repeats, such as transposable elements, can be problematic. This is especially true for evolutionarily young elements, which have not sufficiently diverged from each other to produce distinct and uniquely mappable reads. Mapping difficulties pose a challenge for studying the portfolio of epigenetic modifications and other chromatin regulators that bind to transposons and dictate their activity, which are typically studied using chromatin immunoprecipitation followed by sequencing (ChIP-seq). Since ChIP-seq requires chromatin fragmentation to achieve appropriate resolution, longer reads do not appreciably improve mappability. Here, we present an experimental and computational protocol that couples ChIP-seq with 3D genome folding information to produce protein binding profiles with dramatically increased coverage at interspersed repeats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wells JN, Feschotte C (2020) A field guide to eukaryotic transposable elements. Annu Rev Genet 54:539–561. https://doi.org/10.1146/annurev-genet-040620-022145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. de Koning APJ, Gu W, Castoe TA et al (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7:e1002384. https://doi.org/10.1371/journal.pgen.1002384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bourque G, Burns KH, Gehring M et al (2018) Ten things you should know about transposable elements. Genome Biol 19:199. https://doi.org/10.1186/s13059-018-1577-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Geis FK, Goff SP (2020) Silencing and transcriptional regulation of endogenous retroviruses: an overview. Viruses 12:E884. https://doi.org/10.3390/v12080884

    Article  CAS  Google Scholar 

  5. Fueyo R, Judd J, Feschotte C, Wysocka J (2022) Roles of transposable elements in the regulation of mammalian transcription. Nat Rev Mol Cell Biol 23:481. https://doi.org/10.1038/s41580-022-00457-y

    Article  CAS  PubMed  Google Scholar 

  6. Skene PJ, Henikoff S (2017) An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6:576. https://doi.org/10.7554/eLife.21856

    Article  Google Scholar 

  7. Kaya-Okur HS, Wu SJ, Codomo CA et al (2019) CUT & Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun 10:1930. https://doi.org/10.1038/s41467-019-09982-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Taylor D, Lowe R, Philippe C et al (2021) Locus-specific chromatin profiling of evolutionarily young transposable elements. Nucleic Acids Res 50:e33. https://doi.org/10.1093/nar/gkab1232

    Article  CAS  PubMed Central  Google Scholar 

  9. Mumbach MR, Rubin AJ, Flynn RA et al (2016) HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods 13:919–922. https://doi.org/10.1038/nmeth.3999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramani V, Cusanovich DA, Hause RJ et al (2016) Mapping 3D genome architecture through in situ DNase Hi-C. Nat Protoc 11:2104–2121. https://doi.org/10.1038/nprot.2016.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hsieh T-HS, Weiner A, Lajoie B et al (2015) Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell 162:108–119. https://doi.org/10.1016/j.cell.2015.05.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Altemose N, Maslan A, Smith OK et al (2022) DiMeLo-seq: a long-read, single-molecule method for mapping protein-DNA interactions genome wide. Nat Methods 19:711–723. https://doi.org/10.1038/s41592-022-01475-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Danecek P, Bonfield JK, Liddle J et al (2021) Twelve years of SAMtools and BCFtools. Gigascience 10:giab008. https://doi.org/10.1093/gigascience/giab008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramírez F, Ryan DP, Grüning B et al (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44:W160–W165. https://doi.org/10.1093/nar/gkw257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wingett S, Ewels P, Furlan-Magaril M et al (2015) HiCUP: pipeline for mapping and processing Hi-C data. F1000Res 4:1310. https://doi.org/10.12688/f1000research.7334.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y, Liu T, Meyer CA et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137. https://doi.org/10.1186/gb-2008-9-9-r137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. DeMaere MZ, Darling AE (2018) Sim3C: simulation of Hi-C and Meta3C proximity ligation sequencing technologies. Gigascience 7:gix103. https://doi.org/10.1093/gigascience/gix103

    Article  CAS  Google Scholar 

  19. Mumbach MR, Satpathy AT, Boyle EA et al (2017) Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat Genet 49:1602–1612. https://doi.org/10.1038/ng.3963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel R. Branco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Taylor, D., Branco, M.R. (2023). Inferring Protein-DNA Binding Profiles at Interspersed Repeats Using HiChIP and PAtChER. In: Branco, M.R., de Mendoza Soler, A. (eds) Transposable Elements. Methods in Molecular Biology, vol 2607. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2883-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2883-6_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2882-9

  • Online ISBN: 978-1-0716-2883-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics