Skip to main content

Noninvasive Long-Term Imaging of the Cytoskeleton in Arabidopsis Seedlings

  • Protocol
  • First Online:
The Plant Cytoskeleton

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2604))

  • 936 Accesses

Abstract

The preparation of biological samples, especially for live-cell microscopy, remains a major experimental challenge in the lab despite technological advances. In addition, high-resolution microscopy techniques require higher sample quality and uniformity, which is difficult to ensure during manual preparation while maintaining “ideal” growth conditions. In this protocol, we provide a way out by growing Arabidopsis thaliana seedlings directly in an imaging chamber, which eliminates invasive sample preparation directly before imaging. This method hinges on the precise placement of seeds into imaging chambers, which can be grown in conventional climate chambers. We detail three methods to grow hypocotyls, cotyledons, leaves, and roots for high-resolution and long-term imaging of the plant cytoskeleton. Furthermore, we show that the growth and development of seedlings inside the chambers can be externally manipulated by the addition of chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805. https://doi.org/10.1126/science.8303295

    Article  CAS  Google Scholar 

  2. Mathur J (2007) The illuminated plant cell. Trends Plant Sci 12:506–513. https://doi.org/10.1016/j.tplants.2007.08.017

    Article  CAS  Google Scholar 

  3. Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127. https://doi.org/10.1073/pnas.94.6.2122

    Article  CAS  Google Scholar 

  4. Marc J, Granger CL, Brincat J, Fisher DD, Kao T, McCubbin AG, Cyr RJ (1998) A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell 10:1927–1940. https://doi.org/10.1105/tpc.10.11.1927

    Article  CAS  Google Scholar 

  5. Colin L, Martin-Arevalillo R, Bovio S, Bauer A, Vernoux T, Caillaud M-C, Landrein B, Jaillais Y (2021) Imaging the living plant cell: from probes to quantification. Plant Cell. https://doi.org/10.1093/plcell/koab237

  6. Hamant O, Heisler MG, Jönsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655. https://doi.org/10.1126/science.1165594

    Article  CAS  Google Scholar 

  7. Zhao F, Du F, Oliveri H, Zhou L, Ali O, Chen W, Feng S, Wang Q, Lü S, Long M, Schneider R, Sampathkumar A, Godin C, Traas J, Jiao Y (2020) Microtubule-mediated wall anisotropy contributes to leaf blade flattening. Curr Biol 30:3972–3985.e6. https://doi.org/10.1016/j.cub.2020.07.076

    Article  CAS  Google Scholar 

  8. Schneider R, Tang L, Lampugnani ER, Barkwill S, Lathe R, Zhang Y, McFarlane HE, Pesquet E, Niittyla T, Mansfield SD, Zhou Y, Persson S (2017) Two complementary mechanisms underpin cell wall patterning during xylem vessel development. Plant Cell 29:2433–2449. https://doi.org/10.1105/tpc.17.00309

    Article  CAS  Google Scholar 

  9. Schneider R, Klooster KV, Picard KL, van der Gucht J, Demura T, Janson M, Sampathkumar A, Deinum EE, Ketelaar T, Persson S (2021) Long-term single-cell imaging and simulations of microtubules reveal principles behind wall patterning during proto-xylem development. Nat Commun 12:669. https://doi.org/10.1038/s41467-021-20894-1

    Article  CAS  Google Scholar 

  10. Eng RC, Schneider R, Matz TW, Carter R, Ehrhardt DW, Jönsson H, Nikoloski Z, Sampathkumar A (2021) KATANIN and CLASP function at different spatial scales to mediate microtubule response to mechanical stress in Arabidopsis cotyledons. Curr Biol. https://doi.org/10.1016/j.cub.2021.05.019

  11. Endler A, Kesten C, Schneider R, Zhang Y, Ivakov A, Froehlich A, Funke N, Persson S (2015) A mechanism for sustained cellulose synthesis during salt stress. Cell 162:1353–1364. https://doi.org/10.1016/j.cell.2015.08.028

    Article  CAS  Google Scholar 

  12. Kesten C, Wallmann A, Schneider R, McFarlane HE, Diehl A, Khan GA, van Rossum B-J, Lampugnani ER, Szymanski WG, Cremer N, Schmieder P, Ford KL, Seiter F, Heazlewood JL, Sanchez-Rodriguez C, Oschkinat H, Persson S (2019) The companion of cellulose synthase 1 confers salt tolerance through a Tau-like mechanism in plants. Nat Commun 10:857. https://doi.org/10.1038/s41467-019-08780-3

    Article  Google Scholar 

  13. Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495. https://doi.org/10.1126/science.1126551

    Article  CAS  Google Scholar 

  14. Watanabe Y, Meents MJ, McDonnell LM, Barkwill S, Sampathkumar A, Cartwright HN, Demura T, Ehrhardt DW, Samuels AL, Mansfield SD (2015) Visualization of cellulose synthases in Arabidopsis secondary cell walls. Science 350:198–203. https://doi.org/10.1126/science.aac7446

    Article  CAS  Google Scholar 

  15. Watanabe Y, Schneider R, Barkwill S, Gonzales-Vigil E, Hill JL, Samuels AL, Persson S, Mansfield SD (2018) Cellulose synthase complexes display distinct dynamic behaviors during xylem transdifferentiation. Proc Natl Acad Sci USA 115:E6366–E6374. https://doi.org/10.1073/pnas.1802113115

    Article  CAS  Google Scholar 

  16. Schneider R, Ehrhardt DW, Meyerowitz EM, Sampathkumar A (2022) Tethering of cellulose synthase to microtubules dampens mechano-induced cytoskeletal organization in Arabidopsis pavement cells. Nat Plants 8:1064–1073. https://www.nature.com/articles/s41477-022-01218-7

  17. Grossmann G, Guo W-J, Ehrhardt DW, Frommer WB, Sit RV, Quake SR, Meier M (2011) The RootChip: an integrated microfluidic chip for plant science. Plant Cell 23:4234–4240. https://doi.org/10.1105/tpc.111.092577

    Article  CAS  Google Scholar 

  18. Seerangan K, van Spoordonk R, Sampathkumar A, Eng RC (2020) Long-term live-cell imaging techniques for visualizing pavement cell morphogenesis. Methods Cell Biol 160:365–380. https://doi.org/10.1016/bs.mcb.2020.04.007

    Article  CAS  Google Scholar 

  19. Calder G, Hindle C, Chan J, Shaw P (2015) An optical imaging chamber for viewing living plant cells and tissues at high resolution for extended periods. Plant Methods 11:22. https://doi.org/10.1186/s13007-015-0065-7

    Article  Google Scholar 

  20. Baral A, Aryal B, Jonsson K, Morris E, Demes E, Takatani S, Verger S, Xu T, Bennett M, Hamant O, Bhalerao RP (2021) External mechanical cues reveal a katanin-independent mechanism behind auxin-mediated tissue bending in plants. Dev Cell 56:67–80

    Article  CAS  Google Scholar 

  21. Jonsson K, Lathe RS, Kierzkowski D, Routier-Kierzkowska A-L, Hamant O, Bhalerao RP (2021) Mechanochemical feedback mediates tissue bending required for seedling emergence. Curr Biol. https://doi.org/10.1016/j.cub.2020.12.016

  22. Yamaguchi M, Mitsuda N, Ohtani M, Ohme-Takagi M, Kato K, Demura T (2011) VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J 66:579–590. https://doi.org/10.1111/j.1365-313X.2011.04514.x

    Article  CAS  Google Scholar 

  23. Gutierrez R, Lindeboom JJ, Paredez AR, Emons AMC, Ehrhardt DW (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol 11:797–806. https://doi.org/10.1038/ncb1886

    Article  CAS  Google Scholar 

  24. DeVree BT, Steiner LM, Głazowska S, Ruhnow F, Herburger K, Persson S, Mravec J (2021) Current and future advances in fluorescence-based visualization of plant cell wall components and cell wall biosynthetic machineries. Biotechnol Biofuels 14:78. https://doi.org/10.1186/s13068-021-01922-0

    Article  CAS  Google Scholar 

  25. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Schneider .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material(s)

Sample preparation for imaging hypocotyls. Transfer sterile seeds to the chambers by using sterile toothpicks to push individual seeds through the solid medium until they touch the glass coverslip (MP4 60916 kb)

Animation of large-scale 3D imaging of cotyledons (7-day-old seedling). Acquisition of the montage required 3 h of stable imaging (Leica Stellaris 8; HC PL APO 20×/0.75NA objective; 21 tiles, 125 slices; total imaging volume approximately 2 mm × 1 mm × 0.5 mm with 360 nm resolution in xy and 4 μm in z) (MP4 46775 kb)

Supplemental Material 1_chamber 3d-printer (STL 31 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ruhnow, F., Persson, S., Schneider, R. (2023). Noninvasive Long-Term Imaging of the Cytoskeleton in Arabidopsis Seedlings. In: Hussey, P.J., Wang, P. (eds) The Plant Cytoskeleton. Methods in Molecular Biology, vol 2604. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2867-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2867-6_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2866-9

  • Online ISBN: 978-1-0716-2867-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics