Skip to main content

Quantification of Protein Palmitoylation by Cysteine-SILAC

  • Protocol
  • First Online:
SILAC

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2603))

  • 839 Accesses

Abstract

Cysteine-SILAC enables the detection and quantification of protein S-palmitoylation, an important protein posttranslational modification. Here we describe the cell culture, protein extraction, selective enrichment, mass spectrometry, and data analysis for palmitoylated proteins from cell samples by this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt MFG, Schlesinger MJ (1979) Fatty acid binding to vesicular stomatitis virus glycoprotein: a new type of post-translational modification of the viral glycoprotein. Cell 17:813–819

    Article  CAS  PubMed  Google Scholar 

  2. Linder ME, Deschenes RJ (2007) Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 8:74–84

    Article  CAS  PubMed  Google Scholar 

  3. Chamberlain LH, Shipston MJ (2015) The physiology of protein S-acylation. Physiol Rev 95:341–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ko PJ, Dixon SJ (2018) Protein palmitoylation and cancer. EMBO Rep 19(10):e46666

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jin J, Zhi X, Wang X, Meng D (2021) Protein palmitoylation and its pathophysiological relevance. J Cell Physiol 236(5):3220–3233

    Article  CAS  PubMed  Google Scholar 

  6. Mariscal J, Vagner T, Kim M, Zhou B, Chin A, Zandian M et al (2020) Comprehensive palmitoyl-proteomic analysis identifies distinct protein signatures for large and small cancer-derived extracellular vesicles. J Extracell Vesicles 9:1764192

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dumoulin A, Dagane A, Dittmar G, Rathjen FG (2018) S-palmitoylation is required for the control of growth cone morphology of DRG neurons by CNP-induced cGMP signaling. Front Mol Neurosci 11:345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cui LW, Liu M, Lai SC, Hou HM, Diao TX, Zhang DL et al (2019) Androgen upregulates the palmitoylation of eIF3L in human prostate LNCaP cells. Onco Targets Ther 12:4451–4459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shahid M, Kim M, Jin P, Zhou B, Wang Y, Yang W et al (2020) S-palmitoylation as a functional regulator of proteins associated with cisplatin resistance in bladder cancer. Int J Biol Sci 16(14):2490–2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martin BR, Wang C, Adibekian A, Tully SE, Cravatt BF (2012) Global profiling of dynamic protein palmitoylation. Nat Methods 9(1):84–89

    Article  CAS  Google Scholar 

  11. Wei X, Song H, Semenkovich CF (2014) Insulin-regulated protein palmitoylation impacts endothelial cell function. Arterioscler Thromb Vasc Biol 34(2):346–354

    Article  CAS  PubMed  Google Scholar 

  12. Serwa RA, Abaitua F, Krause E, Tate EW, O’Hare P (2015) Systems analysis of protein fatty acylation in herpes simplex virus-infected cells using chemical proteomics. Chem Biol 22:1008–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hernandez JL, Davda D, Majmudar JD, Won SJ, Prakash A, Choi AI, Martin BR (2016) Correlated S-palmitoylation profiling of Snail-induced epithelial to mesenchymal transition. Mol BioSyst 12:1799–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Y, Martin BR, Cravatt BF, Hofmann SL (2012) DHHC5 protein palmitoylates flotillin-2 and is rapidly degraded on induction of neuronal differentiation in cultured cells. J Biol Chem 287:523–530

    Article  CAS  PubMed  Google Scholar 

  15. Wan J, Savas JN, Roth AF, Sanders SS, Singaraja RR, Hayden MR et al (2013) Tracking brain palmitoylation change: predominance of glial change in a mouse model of Huntington's disease. Chem Biol 20:1421–1434

    Article  CAS  PubMed  Google Scholar 

  16. Zhang J, Planey SL, Ceballos C, Stevens SM Jr, Keay SK, Zacharias DA (2008) Identification of CKAP4/p63 as a major substrate of the palmitoyl acyltransferase DHHC2, a putative tumor suppressor, using a novel proteomics method. Mol Cell Proteomics 7:1378–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Forrester MT, Hess DT, Thompson JW, Hultman R, Moseley MA, Stamler JS, Casey PJ (2011) Site-specific analysis of protein S-acylation by resin-assisted capture. J Lipid Res 52:393–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hemsley PA, Weimar T, Lilley KS, Dupree P, Grierson CS (2013) A proteomic approach identifies many novel palmitoylated proteins in Arabidopsis. New Phytol 197:805–814

    Article  CAS  PubMed  Google Scholar 

  19. Morrison E, Kuropka B, Kliche S, Brügger B, Krause E, Freund C (2015) Quantitative analysis of the human T cell palmitome. Sci Rep 5:11598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Won SJ, Martin BR (2018) Temporal profiling establishes a dynamic S-palmitoylation cycle. ACS Chem Biol 13(6):1560–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jones ML, Collins MO, Goulding D, Choudhary JS, Rayner JC (2012) Analysis of protein palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis. Cell Host Microbe 12(2):246–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang XQ, Zhang L, Ji GH, Lei QY, Fang CY, Lu HJ (2018) Site-specific quantification of protein palmitoylation by cysteine-stable isotope metabolic labeling. Anal Chem 90:10543–10550

    Article  CAS  PubMed  Google Scholar 

  23. Chen X, Smith LM, Bradbury EM (2000) Site-specific mass tagging with stable isotopes in proteins for accurate and efficient protein identification. Anal Chem 72:1134–1143

    Article  CAS  PubMed  Google Scholar 

  24. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  25. van den Bremer ETJ, Labrijn AF, van den Boogaard R, Priem P, Scheffler K, Melis JPM et al (2017) Cysteine-SILAC mass spectrometry enabling the identification and quantitation of scrambled interchain disulfide bonds: preservation of native heavy-light chain pairing in bispecific IgGs generated by controlled Fab-arm exchange. Anal Chem 89:10873–10882

    Article  PubMed  Google Scholar 

  26. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1(6):2856–2860

    Article  CAS  PubMed  Google Scholar 

  27. Wan JM, Roth AF, Bailey AO, Davis NG (2007) Palmitoylated proteins: purification and identification. Nat Protoc 2(7):1573–1584

    Article  CAS  PubMed  Google Scholar 

  28. Chi H, Liu C, Yang H, Zeng WF, Wu L, Zhou WJ et al (2018) Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine. Nat Biotechnol 36:1059–1061

    Article  CAS  Google Scholar 

  29. Carr S, Aebersold R, Baldwin M, Burlingame A, Clauser K, Nesvizhskii A (2004) The need for guidelines in publication of peptide and protein identification data: working group on Publication Guidelines for Peptide and Protein Identification Data. Mol Cell Proteomics 3:531–533

    Article  CAS  PubMed  Google Scholar 

  30. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214

    Article  CAS  PubMed  Google Scholar 

  31. Xie LQ, Zhang L, Nie AY, Yan GQ, Yao J, Zhang Y et al (2015) ITMSQ: a software tool for N- and C-terminal fragment ion pairs based isobaric tandem mass spectrometry quantification. Proteomics 15:3755–3764

    Article  CAS  PubMed  Google Scholar 

  32. Shao-En Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1(6):2650–2660

    Article  PubMed  Google Scholar 

  33. Roth AF, Wan J, Bailey AO, Sun B, Kuchar JA, Green WN et al (2006) Global analysis of protein palmitoylation in yeast. Cell 125:1003–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was supported, in part, by funds from the National Key Research and Development Program (2017YFA0505100 and 2016YFA0501303), the National Science Foundation of China (21335002, 31670835, and 22074020), Shanghai Projects (18ZR1402800, 14DZ2260200, and 15JC1400700), the Ph.D. Programs Foundation of Ministry of Education of China (20130071110034), and the Key Laboratory of Glycoconjugates Research Ministry of Public Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caiyun Fang or Haojie Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fang, C., Zhang, X., Lu, H. (2023). Quantification of Protein Palmitoylation by Cysteine-SILAC. In: Luque-Garcia, J.L. (eds) SILAC. Methods in Molecular Biology, vol 2603. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2863-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2863-8_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2862-1

  • Online ISBN: 978-1-0716-2863-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics