Skip to main content

Combination of Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Substrate Trapping for the Detection of Transient Protein Interactions

  • Protocol
  • First Online:
SILAC

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2603))

Abstract

Antibody-based affinity purification is a recognized method for use in studying protein–protein interactions. There are four different classes of proteins that are typically identified with such affinity purification workflows: bait protein, proteins that specifically interact with the bait protein, proteins nonspecifically associated with the antibody, and proteins that cross-react with the antibody. Mass spectrometry can be used to differentiate these classes of proteins in affinity-purified mixtures. Here we describe the use of stable isotope labeling by amino acids in cell culture, substrate trapping, and mass spectrometry to enable the objective identification of the components of affinity-purified protein complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Selbach M, Mann M (2006) Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nat Methods 3(12):981–983. https://doi.org/10.1038/nmeth972

    Article  CAS  PubMed  Google Scholar 

  2. Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1(5):252–262. https://doi.org/10.1038/nchembio736

    Article  CAS  PubMed  Google Scholar 

  3. Thomas SN, Wan Y, Liao Z, Hanson PI, Yang AJ (2011) Stable isotope labeling with amino acids in cell culture based mass spectrometry approach to detect transient protein interactions using substrate trapping. Anal Chem 83(14):5511–5518. https://doi.org/10.1021/ac200950k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Havis S, Moree WJ, Mali S, Bark SJ (2017) Solid support resins and affinity purification mass spectrometry. Mol BioSyst 13(3):456–462. https://doi.org/10.1039/c6mb00735j

    Article  CAS  PubMed  Google Scholar 

  5. Dunham WH, Mullin M, Gingras AC (2012) Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics 12(10):1576–1590. https://doi.org/10.1002/pmic.201100523

    Article  CAS  PubMed  Google Scholar 

  6. Mellacheruvu D, Wright Z, Couzens AL, Lambert JP, St-Denis NA, Li T, Miteva YV, Hauri S, Sardiu ME, Low TY, Halim VA, Bagshaw RD, Hubner NC, Al-Hakim A, Bouchard A, Faubert D, Fermin D, Dunham WH, Goudreault M, Lin ZY, Badillo BG, Pawson T, Durocher D, Coulombe B, Aebersold R, Superti-Furga G, Colinge J, Heck AJ, Choi H, Gstaiger M, Mohammed S, Cristea IM, Bennett KL, Washburn MP, Raught B, Ewing RM, Gingras AC, Nesvizhskii AI (2013) The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods 10(8):730–736. https://doi.org/10.1038/nmeth.2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pardo M, Choudhary JS (2012) Assignment of protein interactions from affinity purification/mass spectrometry data. J Proteome Res 11(3):1462–1474. https://doi.org/10.1021/pr2011632

    Article  CAS  PubMed  Google Scholar 

  8. Lee CM, Adamchek C, Feke A, Nusinow DA, Gendron JM (2017) Mapping protein-protein interactions using affinity purification and mass spectrometry. Methods Mol Biol 1610:231–249. https://doi.org/10.1007/978-1-4939-7003-2_15

    Article  CAS  PubMed  Google Scholar 

  9. Snider J, Thibault G, Houry WA (2008) The AAA+ superfamily of functionally diverse proteins. Genome Biol 9(4):216. https://doi.org/10.1186/gb-2008-9-4-216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dalal S, Rosser MF, Cyr DM, Hanson PI (2004) Distinct roles for the AAA ATPases NSF and p97 in the secretory pathway. Mol Biol Cell 15(2):637–648. https://doi.org/10.1091/mbc.e03-02-0097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vale RD (2000) AAA proteins. Lords of the ring. J Cell Biol 150(1):F13–F19. https://doi.org/10.1083/jcb.150.1.f13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Finken-Eigen M, Röhricht RA, Köhrer K (1997) The VPS4 gene is involved in protein transport out of a yeast pre-vacuolar endosome-like compartment. Curr Genet 31(6):469–480. https://doi.org/10.1007/s002940050232

    Article  CAS  PubMed  Google Scholar 

  13. Babst M, Katzmann DJ, Estepa-Sabal EJ, Meerloo T, Emr SD (2002) Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3(2):271–282. https://doi.org/10.1016/s1534-5807(02)00220-4

    Article  CAS  PubMed  Google Scholar 

  14. Babst M, Wendland B, Estepa EJ, Emr SD (1998) The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J 17(11):2982–2993. https://doi.org/10.1093/emboj/17.11.2982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hurley JH, Emr SD (2006) The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu Rev Biophys Biomol Struct 35:277–298. https://doi.org/10.1146/annurev.biophys.35.040405.102126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin Y, Kimpler LA, Naismith TV, Lauer JM, Hanson PI (2005) Interaction of the mammalian endosomal sorting complex required for transport (ESCRT) III protein hSnf7-1 with itself, membranes, and the AAA+ ATPase SKD1. J Biol Chem 280(13):12799–12809. https://doi.org/10.1074/jbc.M413968200

    Article  CAS  PubMed  Google Scholar 

  17. Shim S, Kimpler LA, Hanson PI (2007) Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain. Traffic 8(8):1068–1079. https://doi.org/10.1111/j.1600-0854.2007.00584.x

    Article  CAS  PubMed  Google Scholar 

  18. Invitrogen T-REx™ System. A Tetracycline-regulated expression system for mammalian cells. User Guide. https://assets.thermofisher.com/TFS-Assets/LSG/manuals/trexsystem_man.pdf

  19. Cripps D, Thomas SN, Jeng Y, Yang F, Davies P, Yang AJ (2006) Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-Tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J Biol Chem 281(16):10825–10838. https://doi.org/10.1074/jbc.M512786200

    Article  CAS  PubMed  Google Scholar 

  20. Mertins P, Tang LC, Krug K, Clark DJ, Gritsenko MA, Chen L, Clauser KR, Clauss TR, Shah P, Gillette MA, Petyuk VA, Thomas SN, Mani DR, Mundt F, Moore RJ, Hu Y, Zhao R, Schnaubelt M, Keshishian H, Monroe ME, Zhang Z, Udeshi ND, Mani D, Davies SR, Townsend RR, Chan DW, Smith RD, Zhang H, Liu T, Carr SA (2018) Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nat Protoc 13(7):1632–1661. https://doi.org/10.1038/s41596-018-0006-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906. https://doi.org/10.1038/nprot.2007.261

    Article  CAS  PubMed  Google Scholar 

  22. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75(3):663–670. https://doi.org/10.1021/ac026117i

    Article  PubMed  Google Scholar 

  23. Jiang H, Thomas SN, Chen Z, Chiang CY, Cole PA (2019) Comparative analysis of the catalytic regulation of NEDD4-1 and WWP2 ubiquitin ligases. J Biol Chem 294(46):17421–17436. https://doi.org/10.1074/jbc.RA119.009211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tyanova S, Mann M, Cox J (2014) MaxQuant for in-depth analysis of large SILAC datasets. Methods Mol Biol 1188:351–364. https://doi.org/10.1007/978-1-4939-1142-4_24

    Article  CAS  PubMed  Google Scholar 

  25. Vizcaíno JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Ríos D, Dianes JA, Sun Z, Farrah T, Bandeira N, Binz PA, Xenarios I, Eisenacher M, Mayer G, Gatto L, Campos A, Chalkley RJ, Kraus HJ, Albar JP, Martinez-Bartolomé S, Apweiler R, Omenn GS, Martens L, Jones AR, Hermjakob H (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32(3):223–226. https://doi.org/10.1038/nbt.2839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

SNT acknowledges funding from the National Institutes of Health’s National Center for Advancing Translational Sciences, grant UL1TR002494, and start-up funds from the University of Minnesota Department of Laboratory Medicine and Pathology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefani N. Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Duda, J.M., Thomas, S.N. (2023). Combination of Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Substrate Trapping for the Detection of Transient Protein Interactions. In: Luque-Garcia, J.L. (eds) SILAC. Methods in Molecular Biology, vol 2603. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2863-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2863-8_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2862-1

  • Online ISBN: 978-1-0716-2863-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics