Skip to main content

Isolation and Mass Spectrometry Identification of K48 and K63 Ubiquitin Proteome Using Chain-Specific Nanobodies

  • Protocol
  • First Online:
The Ubiquitin Code

Abstract

Protein ubiquitylation is an essential mechanism regulating almost all cellular functions in eukaryotes. The understanding of the role of distinct ubiquitin chains in different cellular processes is essential to identify biomarkers for disease diagnosis and prognosis but also to open new therapeutic possibilities. The high complexity of ubiquitin chains complicates this analysis, and multiple strategies have been developed over the last decades. Here, we report a protocol for the isolation and identification of K48 and K63 ubiquitin chains using chain-specific nanobodies associated to mass spectrometry. Different steps were optimized to increase the purification yield and reduce the binding on nonspecific proteins. The resulting protocol allows the enrichment of ubiquitin chain-specific targets from mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gâtel P, Piechaczyk M, Bossis G (2020) Ubiquitin, SUMO, and Nedd8 as therapeutic targets in cancer. Adv Exp Med Biol 1233:29–54. https://doi.org/10.1007/978-3-030-38266-7_2

    Article  CAS  PubMed  Google Scholar 

  2. Gonzalez-Santamarta M, Bouvier C, Rodriguez MS et al (2022) Ubiquitin-chain dynamics in physiology and pathology. Semin Cell Dev Biol S1084-9521(21):00305-0. https://doi.org/10.1016/j.semcdb.2021.11.023

    Article  CAS  Google Scholar 

  3. Dittmar G, Winklhofer KF (2019) Linear ubiquitin chains: cellular functions and strategies for detection and quantification. Front Chem 7:915. https://doi.org/10.3389/fchem.2019.00915

    Article  CAS  PubMed  Google Scholar 

  4. Swatek KN, Komander D (2016) Ubiquitin modifications. Cell Res 26:399–422. https://doi.org/10.1038/cr.2016.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Newton K, Matsumoto ML, Wertz IE et al (2008) Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134:668–678. https://doi.org/10.1016/j.cell.2008.07.039

    Article  CAS  PubMed  Google Scholar 

  6. Girdwood D, Xirodimas DP, Gordon C (2011) The essential functions of NEDD8 are mediated via distinct surface regions, and not by Polyneddylation in Schizosaccharomyces pombe. PLoS One 6:e20089. https://doi.org/10.1371/journal.pone.0020089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mattern M, Sutherland J, Kadimisetty K et al (2019) Using ubiquitin binders to decipher the ubiquitin code. Trends Biochem Sci 44:599–615. https://doi.org/10.1016/j.tibs.2019.01.011

    Article  CAS  PubMed  Google Scholar 

  8. Lopitz-Otsoa F, Rodriguez-Suarez E, Aillet F et al (2012) Integrative analysis of the ubiquitin proteome isolated using Tandem Ubiquitin Binding Entities (TUBEs). J Proteomics 75:2998–3014. https://doi.org/10.1016/j.jprot.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  9. Bezstarosti K, van der Wal L, Demmers JAA (2020) Detection of protein ubiquitination sites by peptide enrichment and mass spectrometry. J Vis Exp. 157. https://doi.org/10.3791/59079

  10. van Wijk SJ, Fulda S, Dikic I, Heilemann M (2019) Visualizing ubiquitination in mammalian cells. EMBO Rep 20(2):e46520. https://doi.org/10.15252/embr.201846520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chakravarty R, Goel S, Cai W (2014) Nanobody: the “magic bullet” for molecular imaging? Theranostics 4:386–398. https://doi.org/10.7150/thno.8006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De Meyer T, Muyldermans S, Depicker A (2014) Nanobody-based products as research and diagnostic tools. Trends Biotechnol 32:263–270. https://doi.org/10.1016/j.tibtech.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  13. Salvador J-P, Vilaplana L, Marco M-P (2019) Nanobody: outstanding features for diagnostic and therapeutic applications. Anal Bioanal Chem 411:1703–1713. https://doi.org/10.1007/s00216-019-01633-4

    Article  CAS  PubMed  Google Scholar 

  14. Moutel S, Bery N, Bernard V et al (2016) NaLi-H1: a universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. Elife 5:e16228. https://doi.org/10.7554/eLife.16228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all members of the UbiCARE lab, Clémence Coutelle-Rebut for the proofreading of this manuscript. MGS is a fellow from the UbiCODE project funded by the EU’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement (No 765445) and the Association contre le Cancer (ARC). We acknowledge the COST Action CA20113 “PROTEOCURE” supported by COST (European Cooperation in Science and Technology). MSR was also funded by CONACyT-SRE (Mexico) grant 0280365 and the REPERE and prématuration (Ubipièges) programs of Occitanie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel S. Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gonzalez-Santamarta, M., Ceccato, L., Carvalho, A.S., Rain, JC., Matthiesen, R., Rodriguez, M.S. (2023). Isolation and Mass Spectrometry Identification of K48 and K63 Ubiquitin Proteome Using Chain-Specific Nanobodies. In: Rodriguez, M.S., Barrio, R. (eds) The Ubiquitin Code. Methods in Molecular Biology, vol 2602. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2859-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2859-1_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2858-4

  • Online ISBN: 978-1-0716-2859-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics