Skip to main content

RNAi-Based Screening for the Identification of Specific Substrate-Deubiquitinase Pairs

  • Protocol
  • First Online:
The Ubiquitin Code

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2602))

  • 823 Accesses

Abstract

Ubiquitination signals are regulated in time and space due to the coordinated action of E3s and DUBs, which enables the precise control of cellular function and homeostasis. Mutations in all types of ubiquitin-proteasome system (UPS) components are related to pathological conditions. The identification of E3/DUBs’ ubiquitinated substrates can provide a clearer view of the molecular mechanisms underlying those diseases. However, the analysis of ubiquitinated proteins is not trivial. Here, we propose a protocol to identify DUB/substrate pairs, by combining DUB silencing, specific pull-down of the substrate, and image analysis of its ubiquitinated fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdul Rehman SA, Kristariyanto YA, Choi S-Y et al (2016) MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol Cell 63:146–155. https://doi.org/10.1016/j.molcel.2016.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Amerik AY, Hochstrasser M (2004) Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta BBA - Mol Cell Res 1695:189–207. https://doi.org/10.1016/j.bbamcr.2004.10.003

    Article  CAS  Google Scholar 

  3. Kwasna D, Abdul Rehman SA, Natarajan J et al (2018) Discovery and characterization of ZUFSP/ZUP1, a distinct Deubiquitinase class important for genome stability. Mol Cell 70:150–164. https://doi.org/10.1016/j.molcel.2018.02.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Basar MA, Beck DB, Werner A (2021) Deubiquitylases in developmental ubiquitin signaling and congenital diseases. Cell Death Differ 28:538–556. https://doi.org/10.1038/s41418-020-00697-5

    Article  CAS  PubMed  Google Scholar 

  5. Harrigan JA, Jacq X, Martin NM, Jackson SP (2018) Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov 17:57–78. https://doi.org/10.1038/nrd.2017.152

    Article  CAS  PubMed  Google Scholar 

  6. Farshi P, Deshmukh RR, Nwankwo JO et al (2015) Deubiquitinases (DUBs) and DUB inhibitors: a patent review. Expert Opin Ther Pat 25:1191–1208. https://doi.org/10.1517/13543776.2015.1056737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Buiting K, Williams C, Horsthemke B (2016) Angelman syndrome — insights into a rare neurogenetic disorder. Nat Rev Neurol 12:584–593. https://doi.org/10.1038/nrneurol.2016.133

    Article  CAS  PubMed  Google Scholar 

  8. Yang Q, Chen X, Zhang Y et al (2021) The E3 ubiquitin ligase ring finger protein 5 ameliorates NASH through ubiquitin-mediated degradation of 3-Hydroxy-3-Methylglutaryl CoA reductase degradation protein 1. Hepatology 74:3018–3036. https://doi.org/10.1002/hep.32061

    Article  CAS  PubMed  Google Scholar 

  9. Elu N, Osinalde N, Ramirez J et al (2022) Identification of substrates for human deubiquitinating enzymes (DUBs): an up-to-date review and a case study for neurodevelopmental disorders. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2022.01.001

  10. Franco M, Seyfried NT, Brand AH et al (2011) A novel strategy to isolate ubiquitin conjugates reveals wide role for ubiquitination during neural development. Mol Cell Proteomics MCP 10:M110.002188. https://doi.org/10.1074/mcp.M110.002188

    Article  CAS  PubMed  Google Scholar 

  11. Ordureau A, Münch C, Harper JW (2015) Quantifying ubiquitin signaling. Mol Cell 58:660–676. https://doi.org/10.1016/j.molcel.2015.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Udeshi ND, Mani DR, Eisenhaure T et al (2012) Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. Mol Cell Proteomics MCP 11:148–159. https://doi.org/10.1074/mcp.M111.016857

    Article  CAS  PubMed  Google Scholar 

  13. Clute P, Pines J (1999) Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1:82–87. https://doi.org/10.1038/10049

    Article  CAS  PubMed  Google Scholar 

  14. Elu N, Lectez B, Ramirez J et al (2020) Mass spectrometry-based characterization of Ub- and UbL-modified proteins. In: Mass spectrometry data analysis in proteomics. Humana, New York, NY, pp 265–276

    Chapter  Google Scholar 

  15. Kirkpatrick DS, Weldon SF, Tsaprailis G et al (2005) Proteomic identification of ubiquitinated proteins from human cells expressing his-tagged ubiquitin. Proteomics 5:2104–2111. https://doi.org/10.1002/pmic.200401089

    Article  CAS  PubMed  Google Scholar 

  16. Madan B, Walker MP, Young R et al (2016) USP6 oncogene promotes Wnt signaling by deubiquitylating Frizzleds. Proc Natl Acad Sci 113:E2945–E2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qiu G-Z, Mao X-Y, Ma Y et al (2018) Ubiquitin-specific protease 22 acts as an oncoprotein to maintain glioma malignancy through deubiquitinating B cell-specific Moloney murine leukemia virus integration site 1 for stabilization. Cancer Sci 109:2199–2210. https://doi.org/10.1111/cas.13646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmidt TG, Skerra A (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2:1528–1535. https://doi.org/10.1038/nprot.2007.209

    Article  CAS  PubMed  Google Scholar 

  19. Wei Y, Jiang Z, Lu J (2021) USP22 promotes melanoma and BRAF inhibitor resistance via YAP stabilization. Oncol Lett 21:394. https://doi.org/10.3892/ol.2021.12655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fulzele A, Bennett EJ (2018) Ubiquitin diGLY proteomics as an approach to identify and quantify the ubiquitin-modified proteome. Methods Mol Biol Clifton NJ 1844:363–384. https://doi.org/10.1007/978-1-4939-8706-1_23

    Article  CAS  Google Scholar 

  21. Lee SY, Ramirez J, Franco M et al (2014) Ube3a, the E3 ubiquitin ligase causing Angelman syndrome and linked to autism, regulates protein homeostasis through the proteasomal shuttle Rpn10. Cell Mol Life Sci 71:2747–2758. https://doi.org/10.1007/s00018-013-1526-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Juanma Ramirez, Nerea Osinalde, and the rest of the group members for various contributions to the development of this protocol. We also thank Josean Rodriguez for providing valuable advice. This work was supported with MINECO SAF2016-76898-P and PID2020-117333GB-I00 grants, as well as with Basque Government GIC18/150 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Mayor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Elu, N., Presa, N., Mayor, U. (2023). RNAi-Based Screening for the Identification of Specific Substrate-Deubiquitinase Pairs. In: Rodriguez, M.S., Barrio, R. (eds) The Ubiquitin Code. Methods in Molecular Biology, vol 2602. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2859-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2859-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2858-4

  • Online ISBN: 978-1-0716-2859-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics