Skip to main content

Simulating 3D Cell Shape with the Cellular Potts Model

  • Protocol
  • First Online:
Mechanobiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2600))

  • 1182 Accesses

Abstract

Computer simulations have become a widely used method for the field of mechanobiology. An important question is whether one can predict the shape and forces of cells as a function of the extracellular environment. Different types of models have been described before to simulate cell and tissue shapes in structured environments. In this chapter, we give a brief overview of commonly used models and then describe the Cellular Potts Model, a lattice-based modelling framework, in more detail. We provide a hands-on guide on how to build a model that simulates the shape of a single cell on a micropattern in three dimensions in different open source software packages using the Cellular Potts framework. A simulation is set up with an initial configuration of generalized cells that change shape and position due to an energy function that incorporates cellular volume and surface area constraints as well as interaction energies between the generalized cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Discher DE, Janmey P, Wang Y-L (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143. ISSN: 0036-8075, 1095–9203. http://www.sciencemag.org/content/310/5751/1139

  2. Iskratsch T, Wolfenson H, Sheetz MP (2014) Appreciating force and shape—the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol 15:825–833. ISSN: 1471–0072. http://www.nature.com/nrm/journal/v15/n12/abs/nrm3903.html

  3. Hannezo E, Heisenberg C-P (2019) Mechanochemical feedback loops in development and disease. Cell 178:12–25. ISSN: 0092–8674. https://www.sciencedirect.com/science/article/pii/S0092867419306233

  4. Ruprecht V et al. (2017) How cells respond to environmental cues – insights from bio-functionalized substrates. J Cell Sci 130:51–61. ISSN: 0021-9533, 1477–9137. http://jcs.biologists.org/content/130/1/51

  5. Schwarz US, Soine JRD (2015) Traction force microscopy on soft elastic substrates: a guide to recent computational advances. Biochim Biophys Acta Mol Cell Res Mechanobiol 1853:3095–3104. ISSN: 0167-4889. http://www.sciencedirect.com/science/article/pii/S0167488915001822

  6. Bodor DL, Pönisch W, Endres RG, Paluch EK (2020) Of cell shapes and motion: the physical basis of animal cell migration. Dev Cell 52:550–562. ISSN: 1534-5807. https://doi.org/10.1016/j.devcel.2020.02.013

  7. Albert PJ, Schwarz US (2016) Modeling cell shape and dynamics on micropatterns. Cell Adhes Migr 10:516–528. https://doi.org/10.1080/19336918.2016.1148864

    Article  CAS  Google Scholar 

  8. Holmes WR, Edelstein-Keshet LA (2012) Comparison of computational models for eukaryotic cell shape and motility. PLoS Comput Biol 8:e1002793. ISSN: 1553-7358. https://doi.org/10.1371/journal.pcbi.1002793

  9. Danuser G, Allard J, Mogilner A (2013) Mathematical modeling of eukaryotic cell migration: insights beyond experiments. Annu Rev Cell Dev Biol 29:501–528. https://doi.org/10.1146/annurev-cellbio-101512-122308

    Article  CAS  Google Scholar 

  10. Liedekerke PV, Palm MM, Jagiella N, Drasdo D (2015) Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results. Comput Particle Mech 2:401–444. https://doi.org/10.1007/s40571-015-0082-3

  11. Metzcar J, Wang Y, Heiland R, Macklin P (2019) A review of cell-based computational modeling in cancer biology. JCO Clin Cancer Inform 3:1–13. ISSN: 2473-4276. https://pubmed.ncbi.nlm.nih.gov/30715927/

  12. Ziebert F, Swaminathan S, Aranson IS (2012) Model for self-polarization and motility of keratocyte fragments. J R Soc Interface 9:1084–1092. https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2011.0433

    Article  Google Scholar 

  13. Moure A, Gomez H (2021) Phase-field modeling of individual and collective cell migration. Arch Comput Methods Eng 28:311–344. ISSN: 18861784. https://link.springer.com/article/10.1007/s11831-019-09377-1

  14. Alt S, Ganguly P, Salbreux G (2017) Vertex models: from cell mechanics to tissue morphogenesis. Philos Trans R Soc B Biol Sci 372. ISSN: 14712970. https://doi.org/10.1098/rstb.2015.0520

  15. Fletcher AG, Osterfield M, Baker RE, Shvartsman SY (2014) Vertex models of epithelial morphogenesis. Biophys J 106:2291–2304. ISSN: 0006-3495. https://doi.org/10.1016/j.bpj.2013.11.4498

  16. Anderson A, Rejniak K (eds) (2007) Single cell based models in biology and medicine. ISBN: 978-3-7643-8101-1 and 3-7643-8101-9. Birkhäuser, Basel; Berlin [u.a.]

    Google Scholar 

  17. Scianna M, Preziosi L (2013) A Cellular Potts Model simulating cell migration on and in matrix environments. Math Biosci Eng 10:235–261. https://doi.org/10.3934/mbe.2013.10.235

  18. Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69:2013–2016. https://doi.org/10.1103/PhysRevLett.69.2013

    Article  CAS  Google Scholar 

  19. Graner F, Glazier JA (1992) Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E: Stat Nonlinear Soft Matter Phys 47:2128. https://doi.org/10.1103/PhysRevE.47.2128

  20. Szabó A, Merks RMH (2013) Cellular Potts modeling of tumor growth, tumor invasion, and tumor evolution. Front Oncol 3:87. ISSN: 2234-943X. http://www.ncbi.nlm.nih.gov/pubmed/23596570http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3627127

  21. Marée AFM, Jilkine A, Dawes A, Grieneisen VA, Edelstein-Keshet L (2006) Polarization and movement of keratocytes: a multiscale modelling approach Bull Math Biol 5:1169–1211. ISBN: 1153800691. https://doi.org/10.1007/s11538-006-9131-7

  22. Marée AFM, Grieneisen VA, Edelstein-Keshet L (2012) How cells integrate complex stimuli: the effect of feedback from phosphoinositides and cell shape on cell polarization and motility. PLoS Comput Biol 8:e1002402. ISSN: 1553-7358. https://doi.org/10.1371/journal.pcbi.1002402

  23. Albert PJ, Schwarz US (2016) Dynamics of cell ensembles on adhesive micropatterns: bridging the gap between single cell spreading and collective cell migration. PLOS Comput Biol 12:e1004863. ISSN: 1553-7358. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004863

  24. Thüroff F, Goychuk A, Reiter M, Frey E (2019) Bridging the gap between single-cell migration and collective dynamics. eLife 8:e46842. ISSN: 2050084X. https://doi.org/10.7554/eLife.46842

  25. Vianay B et al. (2009) Single cells spreading on a protein lattice adopt an energy minimizing shape. Phys Rev Lett 105:128101. https://doi.org/10.1103/PhysRevLett.105.128101

  26. Albert PJ, Schwarz US (2014) Dynamics of cell shape and forces on micropatterned substrates predicted by a cellular Potts model. Biophys J 106:2340–2352. ISSN: 15420086. https://doi.org/10.1016/j.bpj.2014.04.036

  27. Gradeci D et al. (2021) Cell-scale biophysical determinants of cell competition in epithelia. eLife 10. ISSN: 2050-084X. https://elifesciences.org/articles/61011

  28. Swat MH et al. (2012) Multi-scale modeling of tissues using CompuCell3D. Methods Cell Biol 110:325–366. ISSN: 0091-679X. https://doi.org/10.1016/B978-0-12-388403-9.00013-8

  29. Starruß J, De Back W, Brusch L, Deutsch A (2014) Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology. Bioinformatics 30:1331–1332. ISSN: 14602059. https://doi.org/10.1093/bioinformatics/btt772

  30. Wortel IM, Textor J (2021) Artistoo, a library to build, share, and explore simulations of cells and tissues in the web browser. eLife 10. ISSN: 2050084X. https://doi.org/10.7554/eLife.61288

  31. Daub JT, Merks RM (2015) Cell-based computational modeling of vascular morphogenesis using tissue simulation toolkit. Methods Mol Biol 1214:67–127. ISSN: 10643745. https://link.springer.com/protocol/10.1007/978-1-4939-1462-3_6

  32. Cooper FR et al. (2020) Chaste: cancer, heart and soft tissue environment. J Open Source Softw 5:1848. ISSN: 2475-9066. https://joss.theoj.org/papers/10.21105/joss.01848

  33. Meier-Schellersheim M, Mack G (1999) SIMMUNE, a tool for simulating and analyzing immune system behavior. arXiv: 9903017v1 [cs].http://arxiv.org/abs/cs/9903017

  34. Chen N, Glazier JA, Izaguirre JA, Alber MS (2007) A parallel implementation of the Cellular Potts Model for simulation of cell-based morphogenesis. Comput Phys Commun 176:670–681. https://www.sciencedirect.com/science/article/pii/S0010465507002044

    Article  CAS  Google Scholar 

  35. Gusatto É, Mombach JCM, Cercato FP, Cavalheiro GH (2005) An efficient parallel algorithm to evolve simulations of the cellular Potts model. Parallel Process Lett 15:199–208. https://doi.org/10.1142/S0129626405002155

    Article  Google Scholar 

  36. Berghoff M, Rosenbauer J, Hoffmann F, Schug A (2020) Cells in Silico-introducing a high-performance framework for large-scale tissue modeling. BMC Bioinform 21:1–21. ISSN: 14712105. https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03728-7

  37. Tomeu AJ, Salguero AG (2020) A lock free approach to parallelize the Cellular Potts Model: application to ductal carcinoma in situ. J Integr Bioinform 17:20190070. https://doi.org/10.1515/jib-2019-0070

  38. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087. https://doi.org/10.1063/1.1699114

  39. Voss-Böhme A (2012) Multi-scale modeling in morphogenesis: a critical analysis of the Cellular Potts Model. PLoS ONE 7:42852. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0042852

    Article  Google Scholar 

  40. Tseng Q et al. (2012) Spatial organization of the extracellular matrix regulates cell-cell junction positioning. Proc Natl Acad Sci 109:1506–1511. https://www.pnas.org/doi/abs/10.1073/pnas.1106377109

    Article  CAS  Google Scholar 

  41. Thery M et al. (2022) Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci 103:19771–19776. https://www.pnas.org/doi/abs/10.1073/pnas.0609267103

    Article  Google Scholar 

  42. Magno R, Grieneisen VA, Marée AFM (2015) The biophysical nature of cells: potential cell behaviours revealed by analytical and computational studies of cell surface mechanics. BMC Biophys 8:1–37. http://www.biomedcentral.com/2046-1682/8/8

    Article  CAS  Google Scholar 

  43. Ahrens J, Geveci B, Law C (2005) ParaView: an end-user tool for large-data visualization. Visualization handbook, pp 717–731. https://doi.org/10.1016/B978-012387582-2%2F50038-1

  44. Dietz C, Berthold MR (2022) Focus on bio-image informatics. In: De Vos WH, Munck S, Timmermans J-P (eds). Springer, Cham, pp 179–197. ISBN: 978-3-319-28549-8. https://doi.org/10.1007/978-3-319-28549-8_7

    Google Scholar 

Download references

Acknowledgments

This research has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy via the Excellence Cluster 3D Matter Made to Order (EXC-2082/1 – 390761711). USS is a member of the Interdisciplinary Center for Scientific Computing (IWR) at Heidelberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich S. Schwarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Link, R., Schwarz, U.S. (2023). Simulating 3D Cell Shape with the Cellular Potts Model. In: Zaidel-Bar, R. (eds) Mechanobiology. Methods in Molecular Biology, vol 2600. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2851-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2851-5_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2850-8

  • Online ISBN: 978-1-0716-2851-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics