Skip to main content

Identification of Ubiquitination-Associated Proteins Using 2D-DIGE

  • Protocol
  • First Online:
Difference Gel Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2596))

  • 684 Accesses

Abstract

Ubiquitination is a post-translational modification, in which a small regulatory protein (~8.6 kDa) is tagged as a single moiety or as a chain to target proteins. Ubiquitination is the most versatile cellular regulatory mechanism, essential to the physiological and pathophysiological cellular events that regulate protein turnover, gene transcription, cell cycle progression, DNA repair, apoptosis, viral budding, and receptor-mediated endocytosis. Changes and abnormalities within the ubiquitination process can result in a plethora of diseases, including various cancers. The ubiquitination process is tightly controlled in a stepwise manner by four enzymes: E1 ubiquitin-activating enzymes, E2 ubiquitin-conjugating enzymes, E3 ubiquitin-ligating enzymes, and deubiquitinating proteases. Using fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) to detect and quantitate cellular proteins associated with the ubiquitination process will facilitate the evaluation of this post-translational modification associated with the pathophysiological phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shaid S, Brandts CH, Serve H, Dikic I (2013) Ubiquitination and selective autophagy. Cell Death Differ 20(1):21–30. https://doi.org/10.1038/cdd.2012.72

    Article  PubMed  CAS  Google Scholar 

  2. Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315(5809):201–205. https://doi.org/10.1126/science.1127085

    Article  PubMed  CAS  Google Scholar 

  3. Foot N, Henshall T, Kumar S (2017) Ubiquitination and the regulation of membrane proteins. Physiol Rev 97(1):253–281. https://doi.org/10.1152/physrev.00012.2016

    Article  PubMed  Google Scholar 

  4. Zhang X, Linder S, Bazzaro M (2020) Drug development targeting the ubiquitin-proteasome system (UPS) for the treatment of human cancers. Cancers (Basel) 12(4). https://doi.org/10.3390/cancers12040902

  5. Kondo T (2019) Cancer biomarker development and two-dimensional difference gel electrophoresis (2D-DIGE). Biochim Biophys Acta Proteins Proteom 1867(1):2–8. https://doi.org/10.1016/j.bbapap.2018.07.002

    Article  PubMed  CAS  Google Scholar 

  6. Ciereszko A, Dietrich MA, Slowinska M, Nynca J, Ciborowski M, Kisluk J, Michalska-Falkowska A, Reszec J, Sierko E, Niklinski J (2019) Identification of protein changes in the blood plasma of lung cancer patients subjected to chemotherapy using a 2D-DIGE approach. PLoS One 14(10):e0223840. https://doi.org/10.1371/journal.pone.0223840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Nedjadi T, Albarakati N, Benabdelkamel H, Masood A, Alfadda AA, Al-Maghrabi J (2021) Proteomic profiling of plasma-derived biomarkers in patients with bladder cancer: a step towards clinical translation. Life (Basel) 11(12). https://doi.org/10.3390/life11121294

  8. Chanukuppa V, Taware R, Taunk K, Chatterjee T, Sharma S, Somasundaram V, Rashid F, Malakar D, Santra MK, Rapole S (2020) Proteomic alterations in multiple myeloma: a comprehensive study using bone marrow interstitial fluid and serum samples. Front Oncol 10:566804. https://doi.org/10.3389/fonc.2020.566804

    Article  PubMed  Google Scholar 

  9. Kyle RA, Rajkumar SV (2008) Multiple myeloma. Blood 111(6):2962–2972. https://doi.org/10.1182/blood-2007-10-078022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wang Y, Liu Y, Liu J, Kang R, Tang D (2020) NEDD4L-mediated LTF protein degradation limits ferroptosis. Biochem Biophys Res Commun 531(4):581–587. https://doi.org/10.1016/j.bbrc.2020.07.032

    Article  PubMed  CAS  Google Scholar 

  11. Zoubeidi A, Ettinger S, Beraldi E, Hadaschik B, Zardan A, Klomp LW, Nelson CC, Rennie PS, Gleave ME (2010) Clusterin facilitates COMMD1 and I-kappaB degradation to enhance NF-kappaB activity in prostate cancer cells. Mol Cancer Res 8(1):119–130. https://doi.org/10.1158/1541-7786.MCR-09-0277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ni XG, Zhou L, Wang GQ, Liu SM, Bai XF, Liu F, Peppelenbosch MP, Zhao P (2008) The ubiquitin-proteasome pathway mediates gelsolin protein downregulation in pancreatic cancer. Mol Med 14(9–10):582–589. https://doi.org/10.2119/2008-00020.Ni

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wang J, Liu Y, Tang L, Qi S, Mi Y, Liu D, Tian Q (2017) Identification of candidate substrates of ubiquitin-specific protease 13 using 2D-DIGE. Int J Mol Med 40(1):47–56. https://doi.org/10.3892/ijmm.2017.2984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Morgan EL, Patterson MR, Barba-Moreno D, Scarth JA, Wilson A, Macdonald A (2021) The deubiquitinase (DUB) USP13 promotes Mcl-1 stabilisation in cervical cancer. Oncogene 40(11):2112–2129. https://doi.org/10.1038/s41388-021-01679-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Qu Z, Zhang R, Su M, Liu W (2019) USP13 serves as a tumor suppressor via the PTEN/AKT pathway in oral squamous cell carcinoma. Cancer Manag Res 11:9175–9183. https://doi.org/10.2147/CMAR.S186829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Man X, Piao C, Lin X, Kong C, Cui X, Jiang Y (2019) USP13 functions as a tumor suppressor by blocking the NF-kB-mediated PTEN downregulation in human bladder cancer. J Exp Clin Cancer Res 38(1):259. https://doi.org/10.1186/s13046-019-1262-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wu Y, Zhang Y, Liu C, Wang D, Wang S, Liu F, Li Q, Liu X, Zaky MY, Yan D, Liu S (2019) Amplification of USP13 drives non-small cell lung cancer progression mediated by AKT/MAPK signaling. Biomed Pharmacother 114:108831. https://doi.org/10.1016/j.biopha.2019.108831

    Article  PubMed  CAS  Google Scholar 

  18. Li X, Yang G, Zhang W, Qin B, Ye Z, Shi H, Zhao X, Chen Y, Song B, Mei Z, Zhao Q, Wang F (2022) USP13: multiple functions and target inhibition. Front Cell Dev Biol 10:875124. https://doi.org/10.3389/fcell.2022.875124

    Article  PubMed  PubMed Central  Google Scholar 

  19. Collet B, Guitton N, Saïkali S, Avril T, Pineau C, Hamlat A, Mosser J, Quillien V (2011) Differential analysis of glioblastoma multiforme proteome by a 2D-DIGE approach. Proteome Sci 9(1):16. https://doi.org/10.1186/1477-5956-9-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Pfoh R, Lacdao IK, Saridakis V (2015) Deubiquitinases and the new therapeutic opportunities offered to cancer. Endocr Relat Cancer 22(1):T35–T54. https://doi.org/10.1530/ERC-14-0516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kim HJ, Magesh V, Lee JJ, Kim S, Knaus UG, Lee KJ (2015) Ubiquitin C-terminal hydrolase-L1 increases cancer cell invasion by modulating hydrogen peroxide generated via NADPH oxidase 4. Oncotarget 6(18):16287–16303. https://doi.org/10.18632/oncotarget.3843

    Article  PubMed  PubMed Central  Google Scholar 

  22. Harrigan JA, Jacq X, Martin NM, Jackson SP (2018) Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov 17(1):57–78. https://doi.org/10.1038/nrd.2017.152

    Article  PubMed  CAS  Google Scholar 

  23. Ciereszko A, Dietrich MA, Słowińska M, Nynca J, Ciborowski M, Kaczmarek MM, Myszczyński K, Kiśluk J, Majewska A, Michalska-Falkowska A, Kodzik N, Reszeć J, Sierko E, Nikliński J (2022) Application of two-dimensional difference gel electrophoresis to identify protein changes between center, margin, and adjacent non-tumor tissues obtained from non-small-cell lung cancer with adenocarcinoma or squamous cell carcinoma subtype. PLoS One 17(5):e0268073. https://doi.org/10.1371/journal.pone.0268073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Association As (2019) 2019 Alzheimer’s disease facts and figures. Alzheimers Dement 15(3):321–387. https://doi.org/10.1016/j.jalz.2019.01.010

    Article  Google Scholar 

  25. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185. https://doi.org/10.1126/science.1566067

    Article  PubMed  CAS  Google Scholar 

  26. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344. https://doi.org/10.1056/NEJMra0909142

    Article  PubMed  CAS  Google Scholar 

  27. Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2(1):3–14. https://doi.org/10.1602/neurorx.2.1.3

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shen Y, Hua L, Yeh CK, Shen L, Ying M, Zhang Z, Liu G, Li S, Chen S, Chen X, Yang X (2020) Ultrasound with microbubbles improves memory, ameliorates pathology and modulates hippocampal proteomic changes in a triple transgenic mouse model of Alzheimer’s disease. Theranostics 10(25):11794–11819. https://doi.org/10.7150/thno.44152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Castano EM, Maarouf CL, Wu T, Leal MC, Whiteside CM, Lue LF, Kokjohn TA, Sabbagh MN, Beach TG, Roher AE (2013) Alzheimer disease periventricular white matter lesions exhibit specific proteomic profile alterations. Neurochem Int 62(2):145–156. https://doi.org/10.1016/j.neuint.2012.12.001

    Article  PubMed  CAS  Google Scholar 

  30. Volpicelli-Daley LA (2017) Effects of alpha-synuclein on axonal transport. Neurobiol Dis 105:321–327. https://doi.org/10.1016/j.nbd.2016.12.008

    Article  PubMed  CAS  Google Scholar 

  31. Zlobine I, Gopal K, Ussher JR (2016) Lipotoxicity in obesity and diabetes-related cardiac dysfunction. Biochim Biophys Acta 1861(10):1555–1568. https://doi.org/10.1016/j.bbalip.2016.02.011

    Article  PubMed  CAS  Google Scholar 

  32. Gautier CA, Corti O, Brice A (2014) Mitochondrial dysfunctions in Parkinson’s disease. Rev Neurol (Paris) 170(5):339–343. https://doi.org/10.1016/j.neurol.2013.06.003

    Article  CAS  Google Scholar 

  33. Lim KL, Tan JM (2007) Role of the ubiquitin proteasome system in Parkinson’s disease. BMC Biochem 8(Suppl 1):S13. https://doi.org/10.1186/1471-2091-8-S1-S13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Cook C, Petrucelli L (2009) A critical evaluation of the ubiquitin-proteasome system in Parkinson’s disease. Biochim Biophys Acta 1792(7):664–675. https://doi.org/10.1016/j.bbadis.2009.01.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lip PZ, Demasi M, Bonatto D (2017) The role of the ubiquitin proteasome system in the memory process. Neurochem Int 102:57–65. https://doi.org/10.1016/j.neuint.2016.11.013

    Article  PubMed  CAS  Google Scholar 

  36. Jiang H, Yu Y, Liu S, Zhu M, Dong X, Wu J, Zhang Z, Zhang M, Zhang Y (2019) Proteomic study of a Parkinson’s disease model of undifferentiated SH-SY5Y cells induced by a proteasome inhibitor. Int J Med Sci 16(1):84–92. https://doi.org/10.7150/ijms.28595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ozgul S, Kasap M, Akpinar G, Kanli A, Guzel N, Karaosmanoglu K, Baykal AT, Iseri P (2015) Linking a compound-heterozygous Parkin mutant (Q311R and A371T) to Parkinson’s disease by using proteomic and molecular approaches. Neurochem Int 85-86:1–13. https://doi.org/10.1016/j.neuint.2015.03.007

    Article  PubMed  CAS  Google Scholar 

  38. Hu X, Zhang H, Zhang Y, Zhang Y, Bai L, Chen Q, Wu J, Zhang L (2014) Differential protein profile of PC12 cells exposed to proteasomal inhibitor lactacystin. Neurosci Lett 575:25–30. https://doi.org/10.1016/j.neulet.2014.05.021

    Article  PubMed  CAS  Google Scholar 

  39. Choudhury KR, Das S, Bhattacharyya NP (2016) Differential proteomic and genomic profiling of mouse striatal cell model of Huntington’s disease and control; probable implications to the disease biology. J Proteome 132:155–166. https://doi.org/10.1016/j.jprot.2015.11.007

    Article  CAS  Google Scholar 

  40. Gomez-Cardona EE, Hernandez-Dominguez EE, Velarde-Salcedo AJ, Pacheco AB, Diaz-Gois A, De Leon-Rodriguez A, Barba de la Rosa AP (2017) 2D-DIGE as a strategy to identify serum biomarkers in Mexican patients with Type-2 diabetes with different body mass index. Sci Rep 7:46536. https://doi.org/10.1038/srep46536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lu L, Wang YN, Sun WH, Liu ZH, Zhang Q, Pu LJ, Yang K, Wang LJ, Zhu ZB, Meng H, Yang P, Du R, Chen QJ, Wang LS, Yu H, Shen WF (2013) Two-dimensional fluorescence in-gel electrophoresis of coronary restenosis tissues in minipigs: increased adipocyte fatty acid binding protein induces reactive oxygen species-mediated growth and migration in smooth muscle cells. Arterioscler Thromb Vasc Biol 33(3):572–580. https://doi.org/10.1161/ATVBAHA.112.301016

    Article  PubMed  CAS  Google Scholar 

  42. Oliva K, Barker G, Rice GE, Bailey MJ, Lappas M (2013) 2D-DIGE to identify proteins associated with gestational diabetes in omental adipose tissue. J Endocrinol 218(2):165–178. https://doi.org/10.1530/JOE-13-0010

    Article  PubMed  CAS  Google Scholar 

  43. Maris M, Waelkens E, Cnop M, D’Hertog W, Cunha DA, Korf H, Koike T, Overbergh L, Mathieu C (2011) Oleate-induced beta cell dysfunction and apoptosis: a proteomic approach to glucolipotoxicity by an unsaturated fatty acid. J Proteome Res 10(8):3372–3385. https://doi.org/10.1021/pr101290n

    Article  PubMed  CAS  Google Scholar 

  44. Al-Khalili L, de Castro BT, Ostling J, Massart J, Cuesta PG, Osler ME, Katayama M, Nyström AC, Oscarsson J, Zierath JR (2014) Proteasome inhibition in skeletal muscle cells unmasks metabolic derangements in type 2 diabetes. Am J Physiol Cell Physiol 307(9):C774–C787. https://doi.org/10.1152/ajpcell.00110.2014

    Article  PubMed  CAS  Google Scholar 

  45. Yang XD, Xiang DX, Yang YY (2016) Role of E3 ubiquitin ligases in insulin resistance. Diabetes Obes Metab 18(8):747–754. https://doi.org/10.1111/dom.12677

    Article  PubMed  CAS  Google Scholar 

  46. Lewis C, Jockusch H, Ohlendieck K (2010) Proteomic profiling of the dystrophin-deficient MDX heart reveals drastically altered levels of key metabolic and contractile proteins. J Biomed Biotechnol 2010:648501. https://doi.org/10.1155/2010/648501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lazzari E, Meroni G (2016) TRIM32 ubiquitin E3 ligase, one enzyme for several pathologies: from muscular dystrophy to tumours. Int J Biochem Cell Biol 79:469–477. https://doi.org/10.1016/j.biocel.2016.07.023

    Article  PubMed  CAS  Google Scholar 

  48. Mokhonova EI, Avliyakulov NK, Kramerova I, Kudryashova E, Haykinson MJ, Spencer MJ (2015) The E3 ubiquitin ligase TRIM32 regulates myoblast proliferation by controlling turnover of NDRG2. Hum Mol Genet 24(10):2873–2883. https://doi.org/10.1093/hmg/ddv049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Despina Bazou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dowling, P., Bazou, D. (2023). Identification of Ubiquitination-Associated Proteins Using 2D-DIGE. In: Ohlendieck, K. (eds) Difference Gel Electrophoresis. Methods in Molecular Biology, vol 2596. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2831-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2831-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2830-0

  • Online ISBN: 978-1-0716-2831-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics