Skip to main content

DIGE Analysis of Clinical Specimens

  • Protocol
  • First Online:
Difference Gel Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2596))

Abstract

Two-dimensional difference gel electrophoresis (2D-DIGE) is an elegant gel electrophoretic analytical tool for comparative protein assessment. It is based on two-dimensional gel electrophoresis (2D-GE) separation of fluorescently labeled protein extracts. The tagging procedures are designed to not interfere with the chemical properties of proteins with respect to their pI and electrophoretic mobility, once a proper labeling protocol is followed. The use of an internal pooled standard makes 2D-DIGE a highly accurate quantitative method enabling multiple protein samples to be separated on the same two-dimensional gel. Technical limitations of this technique (i.e., underrating of low abundant, high molecular mass and integral membrane proteins) are counterbalanced by the incomparable separation power which allows proteoforms and unknown PTM (posttranslational modification) identification. Moreover, the image matching and cross-gel statistical analysis generates robust quantitative results making data validation by independent technologies successful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee JM, Kohn EC (2010) Proteomics as a guiding tool for more effective personalized therapy. Annals of oncology : official journal of the European Society for. Med Oncol 21(Suppl 7):vii205–210. https://doi.org/10.1093/annonc/mdq375

    Article  Google Scholar 

  2. Pal R, Alves G, Larsen JP, Moller SG (2014) New insight into neurodegeneration: the role of proteomics. Mol Neurobiol 49(3):1181–1199. https://doi.org/10.1007/s12035-013-8590-8

    Article  CAS  PubMed  Google Scholar 

  3. Huang Z, Ma L, Huang C, Li Q, Nice EC (2016) Proteomic profiling of human plasma for cancer biomarker discovery. Proteomics. https://doi.org/10.1002/pmic.201600240

  4. Kim EY, Kim WK, Oh KJ, Han BS, Lee SC, Bae KH (2015) Recent advances in proteomic studies of adipose tissues and adipocytes. Int J Mol Sci 16(3):4581–4599. https://doi.org/10.3390/ijms16034581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pagel O, Loroch S, Sickmann A, Zahedi RP (2015) Current strategies and findings in clinically relevant post-translational modification-specific proteomics. Expert Rev Proteomics 12(3):235–253. https://doi.org/10.1586/14789450.2015.1042867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sivagnanam A, Shyamsundar V, Kesavan P, Krishnamurthy A, Thangaraj SV, Venugopal DC, Kasirajan H, Ramani P, Sarma VR, Ramshankar V (2022) 2D-DIGE-based proteomic profiling with validations identifies Vimentin as a secretory biomarker useful for early detection and poor prognosis in oral cancers. J Oncol 2022:4215097. https://doi.org/10.1155/2022/4215097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mujammami M, Rafiullah M, Alfadda AA, Akkour K, Alanazi IO, Masood A, Musambil M, Alhalal H, Arafah M, Rahman AMA, Benabdelkamel H (2022) Proteomic analysis of endometrial cancer tissues from patients with type 2 diabetes mellitus. Life (Basel) 12(4). https://doi.org/10.3390/life12040491

  8. Ciregia F, Cetani F, Pardi E, Soggiu A, Piras C, Zallocco L, Borsari S, Ronci M, Caruso V, Marcocci C, Mazzoni MR, Lucacchini A, Giusti L (2021) Parathyroid carcinoma and adenoma co-existing in one patient: case report and comparative proteomic analysis. Cancer Genomics Proteomics 18(6):781–796. https://doi.org/10.21873/cgp.20297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ye G, Yang Q, Lei X, Zhu X, Li F, He J, Chen H, Ling R, Zhang H, Lin T, Liang Z, Liang Y, Huang H, Guo W, Deng H, Liu H, Hu Y, Yu J, Li G (2020) Nuclear MYH9-induced CTNNB1 transcription, targeted by staurosporin, promotes gastric cancer cell anoikis resistance and metastasis. Theranostics 10(17):7545–7560. https://doi.org/10.7150/thno.46001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Celsi F, Monasta L, Arrigoni G, Battisti I, Licastro D, Aloisio M, Di Lorenzo G, Romano F, Ricci G, Ura B (2022) Gel-based proteomic identification of suprabasin as a potential new candidate biomarker in endometrial cancer. Int J Mol Sci 23(4). https://doi.org/10.3390/ijms23042076

  11. Nedjadi T, Albarakati N, Benabdelkamel H, Masood A, Alfadda AA, Al-Maghrabi J (2021) Proteomic profiling of plasma-derived biomarkers in patients with bladder cancer: a step towards clinical translation. Life (Basel) 11(12). https://doi.org/10.3390/life11121294

  12. Ura B, Biffi S, Monasta L, Arrigoni G, Battisti I, Di Lorenzo G, Romano F, Aloisio M, Celsi F, Addobbati R, Valle F, Rampazzo E, Brucale M, Ridolfi A, Licastro D, Ricci G (2021) Two dimensional-difference in gel electrophoresis (2D-DIGE) proteomic approach for the identification of biomarkers in endometrial cancer serum. Cancers 13(14). https://doi.org/10.3390/cancers13143639

  13. Nedjadi T, Benabdelkamal H, Albarakati N, Masood A, Al-Sayyad A, Alfadda AA, Alanazi IO, Al-Ammari A, Al-Maghrabi J (2020) Circulating proteomic signature for detection of biomarkers in bladder cancer patients. Sci Rep 10(1):10999. https://doi.org/10.1038/s41598-020-67929-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Repetto O, Lovisa F, Elia C, Enderle D, Romanato F, Buffardi S, Sala A, Pillon M, Steffan A, Burnelli R, Mussolin L, Mascarin M, De Re V (2021) Proteomic exploration of plasma exosomes and other small extracellular vesicles in Pediatric Hodgkin lymphoma: a potential source of biomarkers for relapse occurrence. Diagnostics (Basel) 11(6). https://doi.org/10.3390/diagnostics11060917

  15. Insenser M, Vilarrasa N, Vendrell J, Escobar-Morreale HF (2021) Remission of diabetes following bariatric surgery: plasma proteomic profiles. J Clin Med 10(17). https://doi.org/10.3390/jcm10173879

  16. Gu D, Chen Y, Masucci M, Xiong C, Zou H, Holthofer H (2020) Potential urine biomarkers for the diagnosis of prediabetes and early diabetic nephropathy based on ISN CKHDP program. Clin Nephrol 93(1):129–133. https://doi.org/10.5414/CNP92S123

    Article  PubMed  Google Scholar 

  17. Benabdelkamel H, Masood A, Okla M, Al-Naami MY, Alfadda AA (2019) A proteomics-based approach reveals differential regulation of urine proteins between metabolically healthy and unhealthy obese patients. Int J Mol Sci 20(19). https://doi.org/10.3390/ijms20194905

  18. Barrachina MN, Sueiro AM, Izquierdo I, Hermida-Nogueira L, Guitian E, Casanueva FF, Farndale RW, Moroi M, Jung SM, Pardo M, Garcia A (2019) GPVI surface expression and signalling pathway activation are increased in platelets from obese patients: elucidating potential anti-atherothrombotic targets in obesity. Atherosclerosis 281:62–70. https://doi.org/10.1016/j.atherosclerosis.2018.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang X, Yu W, Cao X, Wang Y, Zhu C, Guan J (2022) Identification of serum biomarkers in patients with Alzheimer's disease by 2D-DIGE proteomics. Gerontology:1–13. https://doi.org/10.1159/000520961

  20. Rehiman SH, Lim SM, Lim FT, Chin AV, Tan MP, Kamaruzzaman SB, Ramasamy K, Abdul Majeed AB (2020) Fibrinogen isoforms as potential blood-based biomarkers of Alzheimer's disease using a proteomics approach. Int J Neurosci:1–12. https://doi.org/10.1080/00207454.2020.1860038

  21. Pathak D, Srivastava AK, Padma MV, Gulati S, Rajeswari MR (2019) Quantitative proteomic and network analysis of differentially expressed proteins in PBMC of Friedreich's Ataxia (FRDA) patients. Front Neurosci 13:1054. https://doi.org/10.3389/fnins.2019.01054

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gupta AK, Kumar GK, Rani K, Pokhriyal R, Khan MI, Kumar DR, Goyal V, Tripathi M, Gupta R, Chadda RK, Vanamail P, Mohanty AK, Hariprasad G (2019) 2D-DIGE as a strategy to identify serum protein biomarkers to monitor pharmacological efficacy in dopamine-dictated states of Parkinson's disease and schizophrenia. Neuropsychiatr Dis Treat 15:1031–1044. https://doi.org/10.2147/NDT.S198559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Teixeira PC, Ducret A, Langen H, Nogoceke E, Santos RHB, Silva Nunes JP, Benvenuti L, Levy D, Bydlowski SP, Bocchi EA, Kuramoto Takara A, Fiorelli AI, Stolf NA, Pomeranzeff P, Chevillard C, Kalil J, Cunha-Neto E (2021) Impairment of multiple mitochondrial energy metabolism pathways in the heart of Chagas disease cardiomyopathy patients. Front Immunol 12:755782. https://doi.org/10.3389/fimmu.2021.755782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moriggi M, Capitanio D, Torretta E, Barbacini P, Bragato C, Sartori P, Moggio M, Maggi L, Mora M, Gelfi C (2021) Muscle proteomic profile before and after enzyme replacement therapy in late-onset pompe disease. Int J Mol Sci 22(6). https://doi.org/10.3390/ijms22062850

  25. Capitanio D, Moriggi M, Torretta E, Barbacini P, De Palma S, Vigano A, Lochmuller H, Muntoni F, Ferlini A, Mora M, Gelfi C (2020) Comparative proteomic analyses of Duchenne muscular dystrophy and Becker muscular dystrophy muscles: changes contributing to preserve muscle function in Becker muscular dystrophy patients. J Cachexia Sarcopenia Muscle 11(2):547–563. https://doi.org/10.1002/jcsm.12527

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu H, Zhang J, Zhou P, Sun H, Katsarou M, Drakoulis N (2019) Exploration of vascular adhesion protein-1 expression in patients with conjunctivitis associated systemic lupus erythematosus using 2D-DIGE. Exp Ther Med 18(6):5072–5077. https://doi.org/10.3892/etm.2019.8009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qiao L, Deng C, Wang Q, Zhang W, Fei Y, Xu Y, Zhao Y, Li Y (2019) Serum Clusterin and complement factor H may be biomarkers differentiate primary Sjogren's syndrome with and without Neuromyelitis Optica spectrum disorder. Front Immunol 10:2527. https://doi.org/10.3389/fimmu.2019.02527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kirectepe Aydin A, Ozguler Y, Ucar D, Kasap M, Akpinar G, Seyahi E, Tahir Turanli E (2020) Peripheral blood mononuclear cell proteome profile in Behcet's syndrome. Rheumatol Int 40(1):65–74. https://doi.org/10.1007/s00296-019-04417-2

    Article  PubMed  Google Scholar 

  29. Tsuno H, Arito M, Suematsu N, Sato T, Hashimoto A, Matsui T, Omoteyama K, Sato M, Okamoto K, Tohma S, Kurokawa MS, Kato T (2018) A proteomic analysis of serum-derived exosomes in rheumatoid arthritis. BMC Rheumatol 2:35. https://doi.org/10.1186/s41927-018-0041-8

    Article  PubMed  PubMed Central  Google Scholar 

  30. Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18(11):2071–2077. https://doi.org/10.1002/elps.1150181133

    Article  CAS  PubMed  Google Scholar 

  31. Garrels JI (1979) Two dimensional gel electrophoresis and computer analysis of proteins synthesized by clonal cell lines. J Biol Chem 254(16):7961–7977

    Article  CAS  PubMed  Google Scholar 

  32. Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26(3):231–243

    Article  CAS  PubMed  Google Scholar 

  33. O'Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250(10):4007–4021

    Article  CAS  PubMed  Google Scholar 

  34. Capitanio D, Moriggi M, Barbacini P, Torretta E, Moroni I, Blasevich F, Morandi L, Mora M, Gelfi C (2022) Molecular fingerprint of BMD patients lacking a portion in the rod domain of dystrophin. Int J Mol Sci 23(5). https://doi.org/10.3390/ijms23052624

  35. Blundon MA, Schlesinger DR, Parthasarathy A, Smith SL, Kolev HM, Vinson DA, Kunttas-Tatli E, McCartney BM, Minden JS (2016) Proteomic analysis reveals APC-dependent post-translational modifications and identifies a novel regulator of beta-catenin. Development 143(14):2629–2640. https://doi.org/10.1242/dev.130567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burnham-Marusich AR, Plechaty AM, Berninsone PM (2014) Size-matched alkyne-conjugated cyanine fluorophores to identify differences in protein glycosylation. Electrophoresis 35(18):2621–2625. https://doi.org/10.1002/elps.201400241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qu Z, Meng F, Zhou H, Li J, Wang Q, Wei F, Cheng J, Greenlief CM, Lubahn DB, Sun GY, Liu S, Gu Z (2014) NitroDIGE analysis reveals inhibition of protein S-nitrosylation by epigallocatechin gallates in lipopolysaccharide-stimulated microglial cells. J Neuroinflammation 11:17. https://doi.org/10.1186/1742-2094-11-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Albrethsen J, Miller LM, Novikoff PM, Angeletti RH (2011) Gel-based proteomics of liver cancer progression in rat. Biochim Biophys Acta 1814(10):1367–1376. https://doi.org/10.1016/j.bbapap.2011.05.018

    Article  CAS  PubMed  Google Scholar 

  39. Capitanio D, Barbacini P, Arosio B, Guerini FR, Torretta E, Trecate F, Cesari M, Mari D, Clerici M, Gelfi C (2020) Can serum Nitrosoproteome predict longevity of aged women? Int J Mol Sci 21(23). https://doi.org/10.3390/ijms21239009

  40. Gharbi S, Gaffney P, Yang A, Zvelebil MJ, Cramer R, Waterfield MD, Timms JF (2002) Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system. Mol Cell Proteomics 1(2):91–98

    Article  CAS  PubMed  Google Scholar 

  41. Zhou G, Li H, DeCamp D, Chen S, Shu H, Gong Y, Flaig M, Gillespie JW, Hu N, Taylor PR, Emmert-Buck MR, Liotta LA, Petricoin EF 3rd, Zhao Y (2002) 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics 1(2):117–124

    Article  CAS  PubMed  Google Scholar 

  42. Swatton JE, Prabakaran S, Karp NA, Lilley KS, Bahn S (2004) Protein profiling of human postmortem brain using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE). Mol Psychiatry 9(2):128–143. https://doi.org/10.1038/sj.mp.4001475

    Article  CAS  PubMed  Google Scholar 

  43. Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3(1):36–44. https://doi.org/10.1002/pmic.200390006

    Article  CAS  PubMed  Google Scholar 

  44. Knowles MR, Cervino S, Skynner HA, Hunt SP, de Felipe C, Salim K, Meneses-Lorente G, McAllister G, Guest PC (2003) Multiplex proteomic analysis by two-dimensional differential in-gel electrophoresis. Proteomics 3(7):1162–1171. https://doi.org/10.1002/pmic.200300437

    Article  CAS  PubMed  Google Scholar 

  45. Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382(3):669–678. https://doi.org/10.1007/s00216-005-3126-3

    Article  CAS  PubMed  Google Scholar 

  46. Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteome 73(11):2064–2077. https://doi.org/10.1016/j.jprot.2010.05.016

    Article  CAS  Google Scholar 

  47. Gorg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4(12):3665–3685. https://doi.org/10.1002/pmic.200401031

    Article  CAS  PubMed  Google Scholar 

  48. Righetti PG, Gelfi C, Chiari M (1996) Isoelectric focusing in immobilized pH gradients. Methods Enzymol 270:235–255

    Article  CAS  PubMed  Google Scholar 

  49. Righetti PG, Gelfi C (1997) Electrophoresis gel media: the state of the art. J Chromatogr B Biomed Sci Appl 699(1–2):63–75

    Article  CAS  PubMed  Google Scholar 

  50. Yan JX, Devenish AT, Wait R, Stone T, Lewis S, Fowler S (2002) Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics 2(12):1682–1698. https://doi.org/10.1002/1615-9861(200212)2:12<1682::AID-PROT1682>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  51. Dominguez-Santos R, Kosalkova K, Garcia-Estrada C, Barreiro C, Ibanez A, Morales A, Martin JF (2017) Casein phosphopeptides and CaCl2 increase penicillin production and cause an increment in microbody/peroxisome proteins in Penicillium chrysogenum. J Proteome. https://doi.org/10.1016/j.jprot.2016.12.021

  52. Dautel F, Kalkhof S, Trump S, Michaelson J, Beyer A, Lehmann I, von Bergen M (2011) DIGE-based protein expression analysis of B[a]P-exposed hepatoma cells reveals a complex stress response including alterations in oxidative stress, cell cycle control, and cytoskeleton motility at toxic and subacute concentrations. J Proteome Res 10(2):379–393. https://doi.org/10.1021/pr100723d

    Article  CAS  PubMed  Google Scholar 

  53. Lim LC, Looi ML, Zakaria SZ, Sagap I, Rose IM, Chin SF, Jamal R (2016) Identification of differentially expressed proteins in the serum of colorectal cancer patients using 2D-DIGE proteomics analysis. Pathol Oncol Res 22(1):169–177. https://doi.org/10.1007/s12253-015-9991-y

    Article  CAS  PubMed  Google Scholar 

  54. Friedman DB, Hill S, Keller JW, Merchant NB, Levy SE, Coffey RJ, Caprioli RM (2004) Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 4(3):793–811. https://doi.org/10.1002/pmic.200300635

    Article  CAS  PubMed  Google Scholar 

  55. Gade D, Thiermann J, Markowsky D, Rabus R (2003) Evaluation of two-dimensional difference gel electrophoresis for protein profiling. Soluble proteins of the marine bacterium Pirellula sp. strain 1. J Mol Microbiol Biotechnol 5(4):240–251. https://doi.org/10.1159/000071076

    Article  CAS  PubMed  Google Scholar 

  56. Bollag D, Edelstein SJ (1991) Protein extraction. In: Wiley-Liss N (ed) Protein methods

    Google Scholar 

  57. Scopes R (1987) Making an extract. In: Springer Verlag N (ed) Protein purification: principles and practice, 2nd edn

    Chapter  Google Scholar 

  58. Pennington SR, Wilkins MR, Hochstrasser DF, Dunn MJ (1997) Proteome analysis: from protein characterization to biological function. Trends Cell Biol 7(4):168–173. https://doi.org/10.1016/S0962-8924(97)01033-7

    Article  CAS  PubMed  Google Scholar 

  59. Lenstra JA, Bloemendal H (1983) Topography of the total protein population from cultured cells upon fractionation by chemical extractions. Eur J Biochem 135(3):413–423

    Article  CAS  PubMed  Google Scholar 

  60. Toda T, Ishijima Y, Matsushita H, Yoshida M, Kimura N (1994) Detection of thymopoietin-responsive proteins in nude mouse spleen cells by two-dimensional polyacrylamide gel electrophoresis and image processing. Electrophoresis 15(7):984–987

    Article  CAS  PubMed  Google Scholar 

  61. Cull M, McHenry CS (1990) Preparation of extracts from prokaryotes. Methods Enzymol 182:147–153

    Article  CAS  PubMed  Google Scholar 

  62. Jazwinski SM (1990) Preparation of extracts from yeast. Methods Enzymol 182:154–174

    Article  CAS  PubMed  Google Scholar 

  63. Kawaguchi S, Kuramitsu S (1995) Separation of heat-stable proteins from Thermus thermophilus HB8 by two-dimensional electrophoresis. Electrophoresis 16(6):1060–1066

    Article  CAS  PubMed  Google Scholar 

  64. Teixeira-Gomes AP, Cloeckaert A, Bezard G, Dubray G, Zygmunt MS (1997) Mapping and identification of Brucella melitensis proteins by two-dimensional electrophoresis and microsequencing. Electrophoresis 18(1):156–162. https://doi.org/10.1002/elps.1150180128

    Article  CAS  PubMed  Google Scholar 

  65. Gorg A, Boguth G, Obermaier C, Posch A, Weiss W (1995) Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems. Electrophoresis 16(7):1079–1086

    Article  CAS  PubMed  Google Scholar 

  66. Gorg A, Postel W, Domscheit A, Gunther S (1988) Two-dimensional electrophoresis with immobilized pH gradients of leaf proteins from barley (Hordeum vulgare): method, reproducibility and genetic aspects. Electrophoresis 9(11):681–692. https://doi.org/10.1002/elps.1150091103

    Article  CAS  PubMed  Google Scholar 

  67. Gorg A, Postel W, Gunther S (1988) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9(9):531–546. https://doi.org/10.1002/elps.1150090913

    Article  CAS  PubMed  Google Scholar 

  68. Dignam JD (1990) Preparation of extracts from higher eukaryotes. Methods Enzymol 182:194–203

    Article  CAS  PubMed  Google Scholar 

  69. Blomberg A, Blomberg L, Norbeck J, Fey SJ, Larsen PM, Larsen M, Roepstorff P, Degand H, Boutry M, Posch A et al (1995) Interlaboratory reproducibility of yeast protein patterns analyzed by immobilized pH gradient two-dimensional gel electrophoresis. Electrophoresis 16(10):1935–1945

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Ministry of University and Scientific Research (grant PRIN 201742SBXA to D.C. and PRIN 2015FBNB5Y to C.G.), Fondazione Cariplo (grant 2017-0622 to C.G.), and Agenzia Spaziale Italiana (grant 2018-9-U.O STOPBROS to C.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Capitanio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gelfi, C., Capitanio, D. (2023). DIGE Analysis of Clinical Specimens. In: Ohlendieck, K. (eds) Difference Gel Electrophoresis. Methods in Molecular Biology, vol 2596. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2831-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2831-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2830-0

  • Online ISBN: 978-1-0716-2831-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics