Skip to main content

Detection of Endophytes by Molecular Fingerprinting Techniques

  • Protocol
  • First Online:
Endophytic Microbes: Isolation, Identification, and Bioactive Potentials

Abstract

Endophytic fungi and bacteria are ubiquitous and occur within all known plants, including a broad range of hosts in various ecosystems, and therefore play an important role in the natural environment. Million species of endophytic fungi and bacteria are present in plant tissues. Nevertheless, our recognition of endophyte diversity is limited at present. In surveys of endophyte diversity, traditional techniques, such as culture-dependent methods, have been routinely used in since long. The discovery of endophytes in natural environments, however, has been limited by traditional methodology due to some non-culturable endophytes. Molecular techniques, such as DNA fingerprinting and sequencing methods, have been successfully employed in the detection and identification of endophytes fungi, and different endophyte diversity and community composition have been documented by cultivation-dependent and molecular techniques. This chapter summarizes the use of molecular fingerprinting protocols in the study of endophytic fungi and bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  2. Amann R, Ludwig W (2000) Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol Rev 24:555–565

    Article  CAS  PubMed  Google Scholar 

  3. Sun X, Guo L-D (2012) Endophytic fungal diversity: review of traditional and molecular techniques. Mycology 3:165–176. https://doi.org/10.1080/21501203.2012.656724

    Article  Google Scholar 

  4. Reiter B, Wermbter N, Gyamfi S, Schwab H, Sessitsch A (2003) Endophytic Pseudomonas spp. populations of pathogen-infected potato plants analysed by 16S rDNA- and 16S rRNA-based denaturing gradient gel electrophoresis. Plant Soil 257:397–405

    Article  CAS  Google Scholar 

  5. Thies JE (2007) Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Sci Soc Am J 71(2):579–591. https://doi.org/10.2136/sssaj2006.0318

    Article  CAS  Google Scholar 

  6. Felske A, Wolterink A, Van Lis R, Akkermans AD (1998) Phylogeny of the main bacterial 16S rRNA sequences in Drentse a grassland soils (The Netherlands). Appl Environ Microbiol 64:871–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schmalenberger A, Tebbe CC (2003) Bacterial diversity in maize rhizospheres: conclusions on the use of genetic profiles based on PCR-amplified partial small subunit rRNA genes in ecological studies. Mol Ecol 12:251–261

    Article  CAS  PubMed  Google Scholar 

  8. Araujo WL, Marcon J, Maccheroni W Jr, Elsas JD, VanVuurde JW, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylellafastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garbeva P, van Overbeek LS, van Vuurde JWL, van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol 413:69–383

    Google Scholar 

  10. Fajardo V, González I, Dooley J et al (2009) Application of polymerase chain reactionrestriction fragment length polymorphism analysis and lab-on-a-chip capillary electrophoresis for the specific identification of game and domestic meats. J Sci Food Agric 89(5):843–847

    Article  CAS  Google Scholar 

  11. Rojas M, González I, Fajardo V et al (2009) Identification of raw and heat-processed meats from game bird species by polymerase chain reaction-restriction fragment length polymorphism of the mitochondrial D-loop region. Poult Sci 8(3):669–679. ISSN 0032-5791

    Article  Google Scholar 

  12. Liu WT, Marsh TL, Cheng H et al (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63(11):4516–4522. ISSN 0099-2240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Engebretson JJ, Moyer CL (2003) Fidelity of select restriction endonucleases in determining microbial diversity by terminal-restriction fragment length polymorphism. Appl Environ Microbiol 69:4823–4829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32

    Article  CAS  PubMed  Google Scholar 

  15. Conn VM, Franco CMM (2004) Analysis of the endophyticactinobacterial population in the roots of wheat (Triticumaestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Akkermans ADL, van Elsas JD, de Bruijn JJE (2001) Molecular microbial ecology manual. Kluwer, Dordrecht

    Google Scholar 

  17. Bock CH, Thrall PH, Brubaker CL, Burdon JJ (2002) Detection of genetic variation inAlternariabrassicicola using AFLP fingerprinting. Mycol Res 106:428–434. https://doi.org/10.1017/S0953756202005762

    Article  CAS  Google Scholar 

  18. Klamer M, Roberts MS, Levine LH, Drake BG, Garland JL (2002) Influence of elevated CO2 on the fungal community in a coastal scrub oak forest soil investigated with terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol 68:4370–4376. https://doi.org/10.1128/AEM.68.9.4370-4376.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anderson IC, Campbell CD, Prosser JI (2003) Diversity of fungi in organic soils under a moorland – scots pine (Pinussylvestris L.) gradient. Environ Microbiol 5:1121–1132. https://doi.org/10.1046/j.1462-2920.2003.00522.x

    Article  PubMed  Google Scholar 

  20. Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779. https://doi.org/10.1111/j.1462-2920.2004.00675.x

    Article  CAS  PubMed  Google Scholar 

  21. Huai WX, Guo LD, He W (2003) Genetic diversity of an ectomycorrhizal fungus Tricholomaterreumin Larixprincipis-rupprechtii stand assessed using RAPDs. Mycorrhiza 13:265–270. https://doi.org/10.1007/s00572-003-0227-8

    Article  PubMed  Google Scholar 

  22. Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176

    Article  Google Scholar 

  23. Liang Y, Guo LD, Ma KP (2004) Genetic structure of a population of the ectomycorrhizal fungus Russulavinosa in subtropical woodlands in Southwest China. Mycorrhiza 14:235–240. https://doi.org/10.1007/s00572-003-0260-7

    Article  CAS  PubMed  Google Scholar 

  24. Liang Y, Guo LD, Ma KP (2005) Population genetic structure of an ectomycorrhizal fungus Amanita manginiana in a subtropical forest over 2 years. Mycorrhiza 15:137–142. https://doi.org/10.1007/s00572-004-0311-8

    Article  PubMed  Google Scholar 

  25. Raskin L, Stromley J, Rittmann B, Stahl D (1994) Group-specific 16S ribosomal-RNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60(4):1232–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jurgens G, Lindstrom K, Saano A (1997) Novel group within the kingdom Crenarchaeota from boreal forest soil. Appl Environ Microbiol 63(2):803–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gomes N, Heuer H, Schonfeld J, Costa R, Mendonca-Hagler L, Smalla K (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232(1–2):167–180. https://doi.org/10.1023/A:1010350406708

    Article  CAS  Google Scholar 

  28. Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gul F, Hussain A, Jan J, Hamayun M (2017) Genomic DNA extraction for molecular identification of endophytic fungi: an easy and efficient protocol. Biosci Biotechnol Res Asia 14(2):2. https://doi.org/10.13005/bbra/2492

    Article  Google Scholar 

  30. Schulz BJE, Boyle CJC, Sieber TN (2006) Microbial root endophytes, Soil biology, vol 9. Springer, Berlin/Heidelberg. https://doi.org/10.1007/3-540-33526-9

    Book  Google Scholar 

  31. White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  32. Weisburg W, Barns S, Pelletier D, Lane D (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cocolin L, Bisson L, Mills D (2000) Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiol Let 189(1):81–87. https://doi.org/10.1016/S0378-1097(00)00257-3

    Article  CAS  Google Scholar 

  34. Garbeva P, van Veen JA, van Elsas JD (2004) Assessment of the diversity, and antagonism towards Rhizoctonia solaniAG3, of Pseudomonas species in soil from different agricultural regimes. FEMS Microbiol Ecol 47:51–64

    Article  CAS  PubMed  Google Scholar 

  35. Salles JF, De Souza FA, van Elsas JD (2002) Molecular method to assess the diversity of Burkholderiaspecies in environmental samples. Appl Environ Microbiol 68:1595–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Garbeva P, van Veen JA, van Elsas JD (2003) Predominant Bacillus spp. in agricultural soilunder different management regimes detected via PCR-DGGE. Microb Ecol 45:302–316

    Article  CAS  PubMed  Google Scholar 

  37. De Hoog GS, Gerrits Van Den Ende AHG (1998) Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses 189:183–189

    Article  Google Scholar 

  38. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Templeton MD, Rikkerink EHA, Solon SL, Crowhurst RN (1992) Cloning and molecular characterization of the glyceraldehyde3-phosphate dehydrogenase encoding gene and cDNA from the plant pathogenic fungus Glomerellacingulata. Gene 122:225–230

    Article  CAS  PubMed  Google Scholar 

  40. O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. MoI Phylogenet Evol 7:103–116

    Article  Google Scholar 

  41. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556

    Article  CAS  Google Scholar 

  43. Katoh K, Standley DM (2016) A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics:btw108. https://doi.org/10.1093/bioinformatics/btw108

  44. Hall T (2004) Bioedit version 6.0.7

    Google Scholar 

  45. Hiraishi HT, Razandi A, Sugimoto M, Harada T, Ivey T, K.J. (1992) Role of cellular superoxide dismutase against reactive oxygen metabolite injury in cultured bovine aortic endothelial cells. J Biol Chem 267(21):14812–14817. https://doi.org/10.1016/S0021-9258(18)42112-6

    Article  CAS  PubMed  Google Scholar 

  46. Fernandes EG, Pereira OL, Silva CC, Bento CBP, Queiroz MV (2015) Diversity of endophytic fungi in Glycine max. Microbiol Res 181:84–92. https://doi.org/10.1016/j.micres.2015.05.010

    Article  PubMed  Google Scholar 

  47. Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104(8):927–936. https://doi.org/10.1017/S0953756200002471

    Article  CAS  Google Scholar 

  48. Rohlf FJ, NTSYS-pc (1993) Numerical taxonomy and multivariate analysis system version 1.80. Exter software. Setauket, New York

    Google Scholar 

  49. Rivas R, Peix A, Mateos PF, Trujillo ME, Martinez-Molina E, Velazquez E (2006) Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils. Plant Soil 287(1–2):23–33. https://doi.org/10.1007/s11104-006-9062-y

    Article  CAS  Google Scholar 

  50. Bougoure JJ, Bougoure DS, Cairney JWG, Dearnaley JDW (2005) ITS-RFLP and sequence analysis of endophytes from Acianthus, Caladenia and Pterostylis (Orchidaceae) in South-Eastern Queensland. Mycol Res 109(4):452–460. https://doi.org/10.1017/S095375620500225X

    Article  CAS  PubMed  Google Scholar 

  51. Rademaker JLW, Louws FJ, Bruijn FJ (1998) Characterisation of diversity of ecologically important microbes by rep-PCR fingerprinting. In: Akkermans ADL, Van Elsas JD, Bruijn FJ (eds) Molecular microbial ecology manual, supplement, 3rd edn. Kluwer Academic Publishers, Dordrecht, pp 1–26

    Google Scholar 

  52. Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. W. H. Freeman and Company, San Francisco

    Google Scholar 

  53. Lopez AC, Alippi AM (2009) Diversity of Bacillus megaterium isolates cultured from honeys. LWT Food Sci Technol 42:212–219. https://doi.org/10.1016/j.lwt.2008.05.001

    Article  CAS  Google Scholar 

  54. Blignaut M, Ellis AG, Le Roux JJ (2013) Towards a transferable and cost-effective plant AFLP protocol. PLoS One 8(4):e61704. https://doi.org/10.1371/journal.pone.0061704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. N.P. Singh, The Director of ICAR-Indian Institute of Pulses Research, Kanpur, India for constant encouragement and support to draft this protocol.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Manjunatha, L. et al. (2023). Detection of Endophytes by Molecular Fingerprinting Techniques. In: Sankaranarayanan, A., Amaresan, N., Dwivedi, M.K. (eds) Endophytic Microbes: Isolation, Identification, and Bioactive Potentials. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2827-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2827-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2826-3

  • Online ISBN: 978-1-0716-2827-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics