Abstract
Endophytic fungi and bacteria are ubiquitous and occur within all known plants, including a broad range of hosts in various ecosystems, and therefore play an important role in the natural environment. Million species of endophytic fungi and bacteria are present in plant tissues. Nevertheless, our recognition of endophyte diversity is limited at present. In surveys of endophyte diversity, traditional techniques, such as culture-dependent methods, have been routinely used in since long. The discovery of endophytes in natural environments, however, has been limited by traditional methodology due to some non-culturable endophytes. Molecular techniques, such as DNA fingerprinting and sequencing methods, have been successfully employed in the detection and identification of endophytes fungi, and different endophyte diversity and community composition have been documented by cultivation-dependent and molecular techniques. This chapter summarizes the use of molecular fingerprinting protocols in the study of endophytic fungi and bacteria.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99
Amann R, Ludwig W (2000) Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol Rev 24:555–565
Sun X, Guo L-D (2012) Endophytic fungal diversity: review of traditional and molecular techniques. Mycology 3:165–176. https://doi.org/10.1080/21501203.2012.656724
Reiter B, Wermbter N, Gyamfi S, Schwab H, Sessitsch A (2003) Endophytic Pseudomonas spp. populations of pathogen-infected potato plants analysed by 16S rDNA- and 16S rRNA-based denaturing gradient gel electrophoresis. Plant Soil 257:397–405
Thies JE (2007) Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Sci Soc Am J 71(2):579–591. https://doi.org/10.2136/sssaj2006.0318
Felske A, Wolterink A, Van Lis R, Akkermans AD (1998) Phylogeny of the main bacterial 16S rRNA sequences in Drentse a grassland soils (The Netherlands). Appl Environ Microbiol 64:871–879
Schmalenberger A, Tebbe CC (2003) Bacterial diversity in maize rhizospheres: conclusions on the use of genetic profiles based on PCR-amplified partial small subunit rRNA genes in ecological studies. Mol Ecol 12:251–261
Araujo WL, Marcon J, Maccheroni W Jr, Elsas JD, VanVuurde JW, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylellafastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914
Garbeva P, van Overbeek LS, van Vuurde JWL, van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol 413:69–383
Fajardo V, González I, Dooley J et al (2009) Application of polymerase chain reactionrestriction fragment length polymorphism analysis and lab-on-a-chip capillary electrophoresis for the specific identification of game and domestic meats. J Sci Food Agric 89(5):843–847
Rojas M, González I, Fajardo V et al (2009) Identification of raw and heat-processed meats from game bird species by polymerase chain reaction-restriction fragment length polymorphism of the mitochondrial D-loop region. Poult Sci 8(3):669–679. ISSN 0032-5791
Liu WT, Marsh TL, Cheng H et al (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63(11):4516–4522. ISSN 0099-2240
Engebretson JJ, Moyer CL (2003) Fidelity of select restriction endonucleases in determining microbial diversity by terminal-restriction fragment length polymorphism. Appl Environ Microbiol 69:4823–4829
Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32
Conn VM, Franco CMM (2004) Analysis of the endophyticactinobacterial population in the roots of wheat (Triticumaestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794
Akkermans ADL, van Elsas JD, de Bruijn JJE (2001) Molecular microbial ecology manual. Kluwer, Dordrecht
Bock CH, Thrall PH, Brubaker CL, Burdon JJ (2002) Detection of genetic variation inAlternariabrassicicola using AFLP fingerprinting. Mycol Res 106:428–434. https://doi.org/10.1017/S0953756202005762
Klamer M, Roberts MS, Levine LH, Drake BG, Garland JL (2002) Influence of elevated CO2 on the fungal community in a coastal scrub oak forest soil investigated with terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol 68:4370–4376. https://doi.org/10.1128/AEM.68.9.4370-4376.2002
Anderson IC, Campbell CD, Prosser JI (2003) Diversity of fungi in organic soils under a moorland – scots pine (Pinussylvestris L.) gradient. Environ Microbiol 5:1121–1132. https://doi.org/10.1046/j.1462-2920.2003.00522.x
Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779. https://doi.org/10.1111/j.1462-2920.2004.00675.x
Huai WX, Guo LD, He W (2003) Genetic diversity of an ectomycorrhizal fungus Tricholomaterreumin Larixprincipis-rupprechtii stand assessed using RAPDs. Mycorrhiza 13:265–270. https://doi.org/10.1007/s00572-003-0227-8
Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176
Liang Y, Guo LD, Ma KP (2004) Genetic structure of a population of the ectomycorrhizal fungus Russulavinosa in subtropical woodlands in Southwest China. Mycorrhiza 14:235–240. https://doi.org/10.1007/s00572-003-0260-7
Liang Y, Guo LD, Ma KP (2005) Population genetic structure of an ectomycorrhizal fungus Amanita manginiana in a subtropical forest over 2 years. Mycorrhiza 15:137–142. https://doi.org/10.1007/s00572-004-0311-8
Raskin L, Stromley J, Rittmann B, Stahl D (1994) Group-specific 16S ribosomal-RNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60(4):1232–1240
Jurgens G, Lindstrom K, Saano A (1997) Novel group within the kingdom Crenarchaeota from boreal forest soil. Appl Environ Microbiol 63(2):803–805
Gomes N, Heuer H, Schonfeld J, Costa R, Mendonca-Hagler L, Smalla K (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232(1–2):167–180. https://doi.org/10.1023/A:1010350406708
Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241
Gul F, Hussain A, Jan J, Hamayun M (2017) Genomic DNA extraction for molecular identification of endophytic fungi: an easy and efficient protocol. Biosci Biotechnol Res Asia 14(2):2. https://doi.org/10.13005/bbra/2492
Schulz BJE, Boyle CJC, Sieber TN (2006) Microbial root endophytes, Soil biology, vol 9. Springer, Berlin/Heidelberg. https://doi.org/10.1007/3-540-33526-9
White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322
Weisburg W, Barns S, Pelletier D, Lane D (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703
Cocolin L, Bisson L, Mills D (2000) Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiol Let 189(1):81–87. https://doi.org/10.1016/S0378-1097(00)00257-3
Garbeva P, van Veen JA, van Elsas JD (2004) Assessment of the diversity, and antagonism towards Rhizoctonia solaniAG3, of Pseudomonas species in soil from different agricultural regimes. FEMS Microbiol Ecol 47:51–64
Salles JF, De Souza FA, van Elsas JD (2002) Molecular method to assess the diversity of Burkholderiaspecies in environmental samples. Appl Environ Microbiol 68:1595–1603
Garbeva P, van Veen JA, van Elsas JD (2003) Predominant Bacillus spp. in agricultural soilunder different management regimes detected via PCR-DGGE. Microb Ecol 45:302–316
De Hoog GS, Gerrits Van Den Ende AHG (1998) Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses 189:183–189
Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246
Templeton MD, Rikkerink EHA, Solon SL, Crowhurst RN (1992) Cloning and molecular characterization of the glyceraldehyde3-phosphate dehydrogenase encoding gene and cDNA from the plant pathogenic fungus Glomerellacingulata. Gene 122:225–230
O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. MoI Phylogenet Evol 7:103–116
Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330
Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556
Katoh K, Standley DM (2016) A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics:btw108. https://doi.org/10.1093/bioinformatics/btw108
Hall T (2004) Bioedit version 6.0.7
Hiraishi HT, Razandi A, Sugimoto M, Harada T, Ivey T, K.J. (1992) Role of cellular superoxide dismutase against reactive oxygen metabolite injury in cultured bovine aortic endothelial cells. J Biol Chem 267(21):14812–14817. https://doi.org/10.1016/S0021-9258(18)42112-6
Fernandes EG, Pereira OL, Silva CC, Bento CBP, Queiroz MV (2015) Diversity of endophytic fungi in Glycine max. Microbiol Res 181:84–92. https://doi.org/10.1016/j.micres.2015.05.010
Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104(8):927–936. https://doi.org/10.1017/S0953756200002471
Rohlf FJ, NTSYS-pc (1993) Numerical taxonomy and multivariate analysis system version 1.80. Exter software. Setauket, New York
Rivas R, Peix A, Mateos PF, Trujillo ME, Martinez-Molina E, Velazquez E (2006) Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils. Plant Soil 287(1–2):23–33. https://doi.org/10.1007/s11104-006-9062-y
Bougoure JJ, Bougoure DS, Cairney JWG, Dearnaley JDW (2005) ITS-RFLP and sequence analysis of endophytes from Acianthus, Caladenia and Pterostylis (Orchidaceae) in South-Eastern Queensland. Mycol Res 109(4):452–460. https://doi.org/10.1017/S095375620500225X
Rademaker JLW, Louws FJ, Bruijn FJ (1998) Characterisation of diversity of ecologically important microbes by rep-PCR fingerprinting. In: Akkermans ADL, Van Elsas JD, Bruijn FJ (eds) Molecular microbial ecology manual, supplement, 3rd edn. Kluwer Academic Publishers, Dordrecht, pp 1–26
Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. W. H. Freeman and Company, San Francisco
Lopez AC, Alippi AM (2009) Diversity of Bacillus megaterium isolates cultured from honeys. LWT Food Sci Technol 42:212–219. https://doi.org/10.1016/j.lwt.2008.05.001
Blignaut M, Ellis AG, Le Roux JJ (2013) Towards a transferable and cost-effective plant AFLP protocol. PLoS One 8(4):e61704. https://doi.org/10.1371/journal.pone.0061704
Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
Acknowledgments
The authors are grateful to Dr. N.P. Singh, The Director of ICAR-Indian Institute of Pulses Research, Kanpur, India for constant encouragement and support to draft this protocol.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Manjunatha, L. et al. (2023). Detection of Endophytes by Molecular Fingerprinting Techniques. In: Sankaranarayanan, A., Amaresan, N., Dwivedi, M.K. (eds) Endophytic Microbes: Isolation, Identification, and Bioactive Potentials. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2827-0_13
Download citation
DOI: https://doi.org/10.1007/978-1-0716-2827-0_13
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-2826-3
Online ISBN: 978-1-0716-2827-0
eBook Packages: Springer Protocols