Skip to main content

MicroRNA Regulatory Network Analysis Using miRNet 2.0

  • Protocol
  • First Online:
Transcription Factor Regulatory Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2594))

Abstract

MicroRNAs exert their effects in the context of gene regulatory networks. The recent development of high-throughput experimental approaches and the growing availability of gene expression data have permitted comprehensive functional studies of miRNAs. However, the data interpretation is often challenging due to the fact that miRNAs not only act cooperatively with other miRNAs but also participate in complex networks by interacting with other functional elements, including non-coding RNAs or transcription factors that often have extensive effects on cell biology. This chapter provides detailed practical procedures on how to use miRNet 2.0 (https://www.mirnet.ca) to perform miRNA regulatory network analytics to gain functional insights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bracken CP, Scott HS, Goodall GJ (2016) A network-biology perspective of microRNA function and dysfunction in cancer. Nature Reviews Genetics 17. https://doi.org/10.1038/nrg.2016.134

  2. Anastasiadou E, Jacob LS, Slack FJ (2017) Non-coding RNA networks in cancer. Nature Reviews Cancer 18. https://doi.org/10.1038/nrc.2017.99

  3. Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia JJ (2016) miRNet-dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res 44(W1):W135–W141

    Google Scholar 

  4. Fan Y, Habib M, Xia J (2018) Xeno-mirNet: a comprehensive database and analytics platform to explore xeno-miRNAs and their potential targets. PeerJ 2018. https://doi.org/10.7717/peerj.5650

  5. Fan Y, Xia J (2018) miRNet—functional analysis and visual exploration of miRNA–target interactions in a network context. In: Computational cell biology. Springer, pp 215–233

    Google Scholar 

  6. Chang L, Zhou G, Soufan O, Xia J (2020) miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res 48(W1):W244–W251. https://doi.org/10.1093/nar/gkaa467

  7. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell 146(3):353–358

    Article  CAS  Google Scholar 

  8. Zhu X, Gerstein M, Snyder M (2007) Getting connected: analysis and principles of biological networks. Genes Dev 21(9):1010–1024

    Article  CAS  Google Scholar 

  9. Nuzziello N, Vilardo L, Pelucchi P, Consiglio A, Liuni S, Trojano M, Liguori MJ (2018) Investigating the role of MicroRNA and transcription factor co-regulatory networks in multiple sclerosis pathogenesis. Ijoms 19(11):3652

    Google Scholar 

  10. Jacomy M, Venturini T, Heymann S, Bastian M (2014) ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS One 9(6):e98679. https://doi.org/10.1371/journal.pone.0098679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, Vlachos IS, Tastsoglou S, Kanellos I, Papadimitriou D, Kavakiotis I, Maniou S, Skoufos G (2018) DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res 46(D1):D239–D245

    Article  CAS  Google Scholar 

  12. Huang H-Y, Lin Y-C-D, Li J, Huang K-Y, Shrestha S, Hong H-C, Tang Y, Chen Y-G, Jin C-N, Yu Y (2020) miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Res 48(D1):D148–D154

    CAS  PubMed  Google Scholar 

  13. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T (2009) miRecords: an integrated resource for microRNA–target interactions. Nucleic Acids Res 37(suppl_1):D105–D110

    Article  CAS  Google Scholar 

  14. Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11(8):R90

    Article  Google Scholar 

  15. Li J-H, Liu S, Zhou H, Qu L-H, Yang J-H (2014) starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42(D1):D92–D97

    Article  CAS  Google Scholar 

  16. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37(suppl_1):D98–D104

    Article  CAS  Google Scholar 

  17. Huang Z, Shi J, Gao Y, Cui C, Zhang S, Li J, Zhou Y, Cui Q (2019) HMDD v3. 0: a database for experimentally supported human microRNA–disease associations. Nucleic Acids Res 47(D1):D1013–D1017

    Article  CAS  Google Scholar 

  18. Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, Dunger I, Fobo G, Frishman G, Montrone C, Theis FJ (2010) PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol 11(1):R6

    Article  Google Scholar 

  19. Liu X, Wang S, Meng F, Wang J, Zhang Y, Dai E, Yu X, Li X, Jiang W (2013) SM2miR: a database of the experimentally validated small molecules’ effects on microRNA expression. Bioinformatics 29(3):409–411

    Article  CAS  Google Scholar 

  20. Rukov JL, Wilentzik R, Jaffe I, Vinther J, Shomron N (2014) Pharmaco-miR: linking microRNAs and drug effects. Brief Bioinform 15(4):648–659

    Article  CAS  Google Scholar 

  21. Dai E, Yu X, Zhang Y, Meng F, Wang S, Liu X, Liu D, Wang J, Li X, Jiang W (2014) EpimiR: a database of curated mutual regulation between miRNAs and epigenetic modifications. Database (Oxford) 2014(2014):bau023. https://doi.org/10.1093/database/bau023

  22. Tong Z, Cui Q, Wang J, Zhou Y (2019) TransmiR v2. 0: an updated transcription factor-microRNA regulation database. Nucleic Acids Res 47(D1):D253–D258

    Article  CAS  Google Scholar 

  23. Oak N, Ghosh R, Kl H, Wheeler DA, Ding L, Plon SE (2019) Framework for microRNA variant annotation and prioritization using human population and disease datasets. Hum Mutat 40(1):73–89

    Article  CAS  Google Scholar 

  24. Bhattacharya A, Ziebarth JD, Cui Y (2014) PolymiRTS database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Res 42(D1):D86–D91

    Article  CAS  Google Scholar 

  25. Xu T, Su N, Liu L, Zhang J, Wang H, Zhang W, Gui J, Yu K, Li J, Le TD (2018) miRBaseConverter: an R/Bioconductor package for converting and retrieving miRNA name, accession, sequence and family information in different versions of miRBase. BMC bioinformatics 19(19):179–188

    Google Scholar 

  26. Li J, Han X, Wan Y, Zhang S, Zhao Y, Fan R, Cui Q, Zhou Y (2018) TAM 2.0: tool for MicroRNA set analysis. Nucleic Acids Res 46(W1):W180–W185

    Article  CAS  Google Scholar 

  27. Bleazard T, Lamb JA, Griffiths-Jones S (2015) Bias in microRNA functional enrichment analysis. Bioinformatics 31(10):1592–1598

    Article  CAS  Google Scholar 

  28. Csardi G, Nepusz T (2006) The igraph software package for complex network research. Inter J Complex Syst 1695(5):1–9

    Google Scholar 

  29. Smyth GK (2005) Limma: linear models for microarray data. In: Bioinformatics and computational biology solutions using R and Bioconductor. Springer, pp 397–420

    Chapter  Google Scholar 

  30. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  Google Scholar 

  31. Dvinge H, Bertone P (2009) HTqPCR: high-throughput analysis and visualization of quantitative real-time PCR data in R. Bioinformatics 25(24):3325–3326

    Article  CAS  Google Scholar 

  32. Guo Z, Maki M, Ding R, Yang Y, Zhang B, Xiong L (2014) Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues. Sci Rep 4:5150. https://doi.org/10.1038/srep05150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palmieri V, Backes C, Ludwig N, Fehlmann T, Kern F, Meese E, Keller A (2018) IMOTA: an interactive multi-omics tissue atlas for the analysis of human miRNA-target interactions. Nucleic Acids Res 46(D1):D770–d775. https://doi.org/10.1093/nar/gkx701

    Article  CAS  PubMed  Google Scholar 

  34. Mathivanan S, Simpson RJ (2009) ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9:4997–5000. https://doi.org/10.1002/pmic.200900351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, NSERC-CREATE-MATRIX Scholarship, and Canada Research Chairs (CRC) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chang, L., Xia, J. (2023). MicroRNA Regulatory Network Analysis Using miRNet 2.0. In: Song, Q., Tao, Z. (eds) Transcription Factor Regulatory Networks. Methods in Molecular Biology, vol 2594. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2815-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2815-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2814-0

  • Online ISBN: 978-1-0716-2815-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics