Skip to main content

The TARGET System: Rapid Identification of Direct Targets of Transcription Factors by Gene Regulation in Plant Cells

  • Protocol
  • First Online:
Book cover Transcription Factor Regulatory Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2594))

Abstract

The TARGET system allows for the rapid identification of direct regulated gene targets of transcription factors (TFs). It employs the transient transformation of plant protoplasts with inducible nuclear entry of the TF and subsequent transcriptomic and/or ChIP-seq analysis. The ability to separate direct TF–target gene regulatory interactions from indirect downstream responses and the significantly shorter amount of time required to perform the assay, compared to the generation of transgenics, make this plant cell-based approach a valuable tool for a higher throughput approach to identify the genome-wide targets of multiple TFs, to build validated transcriptional networks in plants. Here, we describe the use of the TARGET system in Arabidopsis seedling root protoplasts to map the gene regulatory network downstream of transcription factors-of-interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bargmann BO, Marshall-Colon A, Efroni I et al (2013) TARGET: a transient transformation system for genome-wide transcription factor target discovery. Mol Plant 6:978–980

    Article  CAS  Google Scholar 

  2. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  Google Scholar 

  3. Schena M, Yamamoto KR (1988) Mammalian glucocorticoid receptor derivatives enhance transcription in yeast. Science 241:965–967

    Article  CAS  Google Scholar 

  4. Bargmann BO, Birnbaum KD (2009) Positive fluorescent selection permits precise, rapid, and in-depth overexpression analysis in plant protoplasts. Plant Physiol 149:1231–1239

    Article  CAS  Google Scholar 

  5. Bargmann BO, Birnbaum KD (2010) Fluorescence activated cell sorting of plant protoplasts. J Vis Exp. https://doi.org/10.3791/1673

  6. Para A, Li Y, Marshall-Colón A et al (2014) Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis. Proc Natl Acad Sci 111:10371–10376

    Article  CAS  Google Scholar 

  7. Sparks EE, Drapek C, Gaudinier A et al (2016) Establishment of expression in the SHORTROOT-SCARECROW transcriptional cascade through opposing activities of both activators and repressors. Dev Cell 39:585–596

    Article  CAS  Google Scholar 

  8. Medici A, Marshall-Colon A, Ronzier E et al (2015) AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip. Nat Commun 6:6274

    Article  CAS  Google Scholar 

  9. Safi A, Medici A, Szponarski W et al (2021) GARP transcription factors repress Arabidopsis nitrogen starvation response via ROS-dependent and -independent pathways. J Exp Bot. https://doi.org/10.1093/jxb/erab114

  10. Varala K, Marshall-Colón A, Cirrone J et al (2018) Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants. Proc Natl Acad Sci 115:6494–6499

    Article  CAS  Google Scholar 

  11. Brooks MD, Cirrone J, Pasquino AV et al (2019) Network Walking charts transcriptional dynamics of nitrogen signaling by integrating validated and predicted genome-wide interactions. Nat Commun 10:1569

    Article  Google Scholar 

  12. Alvarez JM, Schinke A-L, Brooks MD et al (2020) Transient genome-wide interactions of the master transcription factor NLP7 initiate a rapid nitrogen-response cascade. Nat Commun 11:1–13

    Article  Google Scholar 

  13. Brooks MD, Juang C-L, Katari MS et al (2021) ConnecTF: A platform to integrate transcription factor–gene interactions and validate regulatory networks. Plant Physiol 185:49–66. https://doi.org/10.1093/plphys/kiaa012

  14. Doidy J, Li Y, Neymotin B et al (2016) “Hit-and-Run” transcription: de novo transcription initiated by a transient bZIP1 “hit” persists after the “run”. BMC Genomics 17:92

    Article  Google Scholar 

  15. Para A, Li Y, Coruzzi GM (2018) μChIP-Seq for genome-wide mapping of in vivo TF-DNA interactions in Arabidopsis root protoplasts. In: Ristova D, Barbez E (eds) Root development: methods and protocols. Springer, New York, pp 249–261

    Google Scholar 

  16. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  17. Kim D, Paggi JM, Park C et al (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915

    Article  CAS  Google Scholar 

  18. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  Google Scholar 

  19. Anders S, Pyl PT, Huber W (2015) HTSeq – a python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  Google Scholar 

  20. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  CAS  Google Scholar 

  21. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  Google Scholar 

  22. Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grant R01-GM121753 to G.M.C., NIH NIGMS Fellowship F32GM116347 to M.D.B., and USDA-NIFA Hatch VA-160133 and Multistate VA-136377 projects to B.O.R.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastiaan O. R. Bargmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brooks, M.D., Reed, K.M., Krouk, G., Coruzzi, G.M., Bargmann, B.O.R. (2023). The TARGET System: Rapid Identification of Direct Targets of Transcription Factors by Gene Regulation in Plant Cells. In: Song, Q., Tao, Z. (eds) Transcription Factor Regulatory Networks. Methods in Molecular Biology, vol 2594. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2815-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2815-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2814-0

  • Online ISBN: 978-1-0716-2815-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics