Skip to main content

MRI Methods for Imaging Beta-Cell Function in the Rodent Pancreas

  • Protocol
  • First Online:
Type-1 Diabetes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2592))

Abstract

The role of Zn2+ ions in proper storage of insulin in β-cell granules is well-established so when insulin is secreted from β-cells stimulated by an increase in plasma glucose, free Zn2+ ions are also released. This local increase in Zn2+ can be detected in the pancreas of rodents in real time by the use of a zinc-responsive MR contrast agent. This method offers the opportunity to monitor β-cell function longitudinally in live rodents. The methods used in our lab are fully described in this short report and some MR images of a rat pancreas showing clearly enhanced hot spots in the tail are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim EE (2014) Clinical perfusion MRI: techniques and applications. J Nucl Med 55:522

    Article  Google Scholar 

  2. Baliyan V, Das CJ, Sharma R, Gupta AK (2016) Diffusion weighted imaging: technique and applications. W J Radiol 8:785–798

    Article  Google Scholar 

  3. Hecht S, Adams WH (2010) MRI of brain disease in veterinary patients part 2: acquired brain disorders. Vet Clin North Am Small Anim Pract 240:39–63

    Article  Google Scholar 

  4. Kurniawan ND (2018) MRI in the study of animal models of neurodegenerative diseases. In: García Martín ML, López Larrubia P (eds) Preclinical MRI: methods and protocols. Springer, New York, pp 347–375

    Chapter  Google Scholar 

  5. Denic A, Macura SI, Mishra P, Gamez JD, Rodriguez M, Pirko I (2011) MRI in rodent models of brain disorders. Neurotherapeutics 8:3–18

    Article  Google Scholar 

  6. Yousaf T, Dervenoulas G, Politis M (2018) Chapter two – advances in MRI methodology. In: Politis M (ed) International review of neurobiology, vol 141. Academic Press, pp 31–76

    Google Scholar 

  7. Moats RA, Fraser SE, Meade TJ (1997) A “smart” magnetic resonance imaging agent that reports on specific enzymatic activity. Angew Chem 36:726–728

    Article  CAS  Google Scholar 

  8. De Leon-Rodriguez L, Lubag AJ Jr, Sherry AD (2012) Imaging free zinc levels in vivo – what can be learned? Inorganica Chim Acta 393:12–23

    Article  Google Scholar 

  9. Kawahara M, Tanaka KI, Kato-Negishi M (2018) Zinc, carnosine, and neurodegenerative diseases. Nutrients 10:147

    Article  Google Scholar 

  10. Franklin RB, Costello LC (2007) Zinc as an anti-tumor agent in prostate cancer and in other cancers. Arc Biochem Biophys 463:211–217

    Article  CAS  Google Scholar 

  11. Fukunaka A, Fujitani Y (2018) Role of zinc homeostasis in the pathogenesis of diabetes and obesity. Int J Mol Sci 19:476–490

    Article  Google Scholar 

  12. Lubag AJ, De Leon-Rodriguez LM, Burgess SC, Sherry AD (2011) Noninvasive MRI of beta-cell function using a Zn2+−responsive contrast agent. Proc Natl Acad Sci U S A 108:18400–18405

    Google Scholar 

  13. Martins AF, Clavijo Jordan V, Bochner F, Chirayil S, Paranawithana N, Zhang S et al (2018) Imaging insulin secretion from mouse pancreas by MRI is improved by use of a zinc-responsive MRI sensor with lower affinity for Zn(2+) ions. J Am Chem Soc 140:17456–17464

    Article  CAS  Google Scholar 

  14. Clavijo Jordan MV, Lo ST, Chen S, Preihs C, Chirayil S, Zhang S et al (2016) Zinc-sensitive MRI contrast agent detects differential release of Zn(II) ions from the healthy vs. malignant mouse prostate. Proc Natl Acad Sci U S A 113:E5464–E5471

    Article  CAS  Google Scholar 

  15. Clavijo Jordan V, Al-Ebraheem A, Geraki K, Dao E, Martins AF, Chirayil S et al (2019) Synchrotron radiation X-ray fluorescence elemental mapping in healthy versus malignant prostate tissues provides new insights into the glucose-stimulated zinc trafficking in the prostate as discovered by MRI. Inorg Chem 58:13654–13660

    Article  CAS  Google Scholar 

  16. Chirayil S, Jordan VC, Martins AF, Paranawithana N, Ratnakar SJ, Sherry AD (2021) Manganese(II)-based responsive contrast agent detects glucose-stimulated zinc secretion from the mouse pancreas and prostate by MRI. Inorg Chem 60:2168–2177

    Article  CAS  Google Scholar 

  17. Khalighinejad P, Parrott D, Sherry AD (2020) Imaging tissue physiology in vivo by use of metal ion-responsive MRI contrast agents. Pharmaceuticals (Basel) 13:268–285

    Article  CAS  Google Scholar 

  18. Khalighinejad P, Parrott D, Jordan VC, Chirayil S, Preihs C, Rofsky NM et al (2021) Magnetic resonance imaging detection of glucose-stimulated zinc secretion in the enlarged dog prostate as a potential method for differentiating prostate cancer from benign prostatic hyperplasia. Investig Radiol 56:450–457

    CAS  Google Scholar 

  19. Clavijo Jordan V, Hines CDG, Gantert LT, Wang S, Conarello S, Preihs C et al (2021) Imaging beta-cell function in the pancreas of non-human primates using a zinc-sensitive MRI contrast agent. Front Endocrinol 12:641722

    Article  Google Scholar 

  20. Peternel L, Škrajnar Š, Černe M (2010) A comparative study of four permanent cannulation procedures in rats. J Pharmacol Toxicol Methods 61:20–26

    Article  CAS  Google Scholar 

  21. Barge A, Cravotto G, Gianolio E, Fedeli F (2006) How to determine free Gd and free ligand in solution of Gd chelates. A technical note. Contrast Media Mol Imag 1:184–188

    Article  Google Scholar 

  22. Bardelmeijer HA, Buckle T, Ouwehand M, Beijnen JH, Schellens JH, van Tellingen O (2003) Cannulation of the jugular vein in mice: a method for serial withdrawal of blood samples. Lab Anim 37:181–187

    Article  CAS  Google Scholar 

  23. Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D et al (2001) A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 21:15–23

    Article  CAS  Google Scholar 

  24. Ehman RL, McNamara MT, Pallack M, Hricak H, Higgins CB (1984) Magnetic resonance imaging with respiratory gating: techniques and advantages. Am J Roentgenol 143:1175–1182

    Article  CAS  Google Scholar 

  25. Crisi G, Filice S, Graziuso S, Tona F (2019) The influence of contrast-to-noise ratio on the discrimination between cortical and juxtacortical lesions in multiple sclerosis. J Comput Assist Tomogr 43:958–962

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Institutes of Health (NIH; grant DK-095416) and valuable input from Dr. Xiaodong Wen and Dr. Shanrong Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dean Sherry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Khalighinejad, P., Suh, E.H., Sherry, A.D. (2023). MRI Methods for Imaging Beta-Cell Function in the Rodent Pancreas. In: Moore, A., Wang, P. (eds) Type-1 Diabetes. Methods in Molecular Biology, vol 2592. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2807-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2807-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2806-5

  • Online ISBN: 978-1-0716-2807-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics