Skip to main content

3D Optical Molecular Imaging of the Rodent Pancreas by OPT and LSFM

  • Protocol
  • First Online:
Type-1 Diabetes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2592))

Abstract

The rodent pancreas is the prevalent model system for preclinical diabetes research. However, due to the compound endocrine–exocrine organization of the gland, with the endocrine islets of Langerhans scattered by the thousands throughout the much greater exocrine parenchyma, stereological assessments of endocrine cell mass, commonly insulin-producing ß-cells, are exceedingly challenging. In recent years, optical mesoscopic imaging techniques such as optical projection tomography (OPT) and light sheet fluorescence microscopy (LSFM) have seen dramatic developments, enabling 3D visualization of fluorescently labeled cells in mm- to cm-sized tissues with μm resolution. Here we present a protocol for 3D visualization and “absolute” quantitative assessments of, for example, islet mass throughout the volume of rodent pancreata with maintained spatial context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharpe J, Ahlgren U, Perry P, Hill B, Ross A, Hecksher-Sorensen J et al (2002) Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296(5567):541–545. https://doi.org/10.1126/science.1068206

    Article  CAS  Google Scholar 

  2. Dodt HU, Leischner U, Schierloh A, Jahrling N, Mauch CP, Deininger K et al (2007) Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4(4):331–336. https://doi.org/10.1038/nmeth1036

    Article  CAS  Google Scholar 

  3. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686):1007–1009. https://doi.org/10.1126/science.1100035

    Article  CAS  Google Scholar 

  4. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322(5904):1065–1069. https://doi.org/10.1126/science.1162493

    Article  CAS  Google Scholar 

  5. Alanentalo T, Hahn M, Willekens SMA, Ahlgren U (2021) Mesoscopic optical imaging of the pancreas-revisiting pancreatic anatomy and pathophysiology. Front Endocrinol (Lausanne) 12:633063. https://doi.org/10.3389/fendo.2021.633063

    Article  Google Scholar 

  6. Alanentalo T, Asayesh A, Morrison H, Loren CE, Holmberg D, Sharpe J et al (2007) Tomographic molecular imaging and 3D quantification within adult mouse organs. Nat Methods 4(1):31–33. https://doi.org/10.1038/nmeth985

    Article  CAS  Google Scholar 

  7. Serra-Navarro B, Fernandez-Ruiz R, Garcia-Alaman A, Pradas-Juni M, Fernandez-Rebollo E, Esteban Y et al (2021) Gsalpha-dependent signaling is required for postnatal establishment of a functional beta-cell mass. Mol Metab 53:101264. https://doi.org/10.1016/j.molmet.2021.101264

    Article  CAS  Google Scholar 

  8. Hahn M, van Krieken PP, Nord C, Alanentalo T, Morini F, Xiong Y et al (2020) Topologically selective islet vulnerability and self-sustained downregulation of markers for beta-cell maturity in streptozotocin-induced diabetes. Commun Biol 3(1):541. https://doi.org/10.1038/s42003-020-01243-2

    Article  CAS  Google Scholar 

  9. Grong E, Nord C, Arbo IB, Eriksson M, Kulseng BE, Ahlgren U et al (2017) The effect of hypergastrinemia following sleeve gastrectomy and pantoprazole on type 2 diabetes mellitus and beta-cell mass in Goto-Kakizaki rats. J Endocrinol Investig. https://doi.org/10.1007/s40618-017-0793-9

  10. Parween S, Kostromina E, Nordd C, Eriksson M, Linddström P, Ahlgren U (2016) Intra-islet lesions and lobular variations in β-cell mass expansion in ob/ob mice revealed by 3D imaging of intact pancreas. Sci Rep 6. https://doi.org/10.1038/srep34885

  11. Grong E, Kulseng B, Arbo IB, Nord C, Eriksson M, Ahlgren U et al (2016) Sleeve gastrectomy, but not duodenojejunostomy, preserves total beta-cell mass in Goto-Kakizaki rats evaluated by three-dimensional optical projection tomography. Surg Endosc 30(2):532–542. https://doi.org/10.1007/s00464-015-4236-4

    Article  Google Scholar 

  12. Van de Casteele M, Leuckx G, Baeyens L, Cai Y, Yuchi Y, Coppens V et al (2013) Neurogenin 3+ cells contribute to beta-cell neogenesis and proliferation in injured adult mouse pancreas. Cell Death Dis 4:e523. https://doi.org/10.1038/cddis.2013.52

    Article  CAS  Google Scholar 

  13. Alanentalo T, Hornblad A, Mayans S, Karin Nilsson A, Sharpe J, Larefalk A et al (2010) Quantification and three-dimensional imaging of the insulitis-induced destruction of beta-cells in murine type 1 diabetes. Diabetes 59(7):1756–1764. https://doi.org/10.2337/db09-1400

    Article  Google Scholar 

  14. Hörnblad A, Nord CSP, Ahnfeldt-Rønne J, Ahlgren U (2016) The pancreas. In: Baldock R, Bard J, Davidson DR, Moriss-Kay G (eds) Kaufman’s Atlas of mouse development supplement: with coronal images. Academic/Elsevier, London, pp 85–94

    Chapter  Google Scholar 

  15. Hornblad A, Eriksson AU, Sock E, Hill RE, Ahlgren U (2011) Impaired spleen formation perturbs morphogenesis of the gastric lobe of the pancreas. PLoS One 6(6):e21753. https://doi.org/10.1371/journal.pone.0021753

    Article  CAS  Google Scholar 

  16. Asayesh A, Sharpe J, Watson RP, Hecksher-Sorensen J, Hastie ND, Hill RE et al (2006) Spleen versus pancreas: strict control of organ interrelationship revealed by analyses of Bapx1-/- mice. Genes Dev 20(16):2208–2213. https://doi.org/10.1101/gad.381906

    Article  CAS  Google Scholar 

  17. Hornblad A, Cheddad A, Ahlgren U (2011) An improved protocol for optical projection tomography imaging reveals lobular heterogeneities in pancreatic islet and beta-cell mass distribution. Islets 3(4):204–208. https://doi.org/10.4161/isl.3.4.16417

    Article  Google Scholar 

  18. Vallejo Ramirez PP, Zammit J, Vanderpoorten O, Riche F, Ble FX, Zhou XH et al (2019) OptiJ: open-source optical projection tomography of large organ samples. Sci Rep 9(1):15693. https://doi.org/10.1038/s41598-019-52065-0

    Article  CAS  Google Scholar 

  19. Voigt FF, Kirschenbaum D, Platonova E, Pages S, Campbell RAA, Kastli R et al (2019) The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. Nat Methods 16(11):1105–1108. https://doi.org/10.1038/s41592-019-0554-0

    Article  CAS  Google Scholar 

  20. Wong MD, Dazai J, Walls JR, Gale NW, Henkelman RM (2013) Design and implementation of a custom built optical projection tomography system. PLoS One 8(9):e73491. https://doi.org/10.1371/journal.pone.0073491

    Article  CAS  Google Scholar 

  21. Eriksson AU, Svensson C, Hornblad A, Cheddad A, Kostromina E, Eriksson M et al (2013) Near infrared optical projection tomography for assessments of beta-cell mass distribution in diabetes research. J Vis Exp 71:e50238. https://doi.org/10.3791/50238

    Article  Google Scholar 

  22. Cheddad A, Svensson C, Sharpe J, Georgsson F, Ahlgren U (2012) Image processing assisted algorithms for optical projection tomography. IEEE Trans Med Imaging 31(1):1–15. https://doi.org/10.1109/TMI.2011.2161590

    Article  Google Scholar 

  23. Koley D, Bard AJ (2010) Triton X-100 concentration effects on membrane permeability of a single HeLa cell by scanning electrochemical microscopy (SECM). Proc Natl Acad Sci U S A 107(39):16783–16787. https://doi.org/10.1073/pnas.1011614107

    Article  Google Scholar 

  24. Campbell-Thompson M, Tang SC (2021) Pancreas optical clearing and 3-D microscopy in health and diabetes. Front Endocrinol (Lausanne) 12:644826. https://doi.org/10.3389/fendo.2021.644826

    Article  Google Scholar 

Download references

Acknowledgement

We are grateful to previous and current lab members and collaborators for their invaluable contributions to the presented protocol which was developed with support of the Swedish Research Council, the European Commission, the Kempe Foundations, the Novo Nordisk Foundation, the Swedish Diabetes Foundation, the Juvenile Diabetes Research Foundation (Barndiabetesfonden), Diabetes Wellness (Sweden) and Umeå University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Ahlgren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hahn, M., Ahlgren, U. (2023). 3D Optical Molecular Imaging of the Rodent Pancreas by OPT and LSFM. In: Moore, A., Wang, P. (eds) Type-1 Diabetes. Methods in Molecular Biology, vol 2592. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2807-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2807-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2806-5

  • Online ISBN: 978-1-0716-2807-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics