Skip to main content

Preclinical Models of THC and Nicotine Exposure During Adolescent Brain Development: Modeling Neuropsychiatric Phenotypes Related to Dopaminergic Transmission

  • Protocol
  • First Online:
Dopaminergic System Function and Dysfunction: Experimental Approaches

Part of the book series: Neuromethods ((NM,volume 193))

  • 570 Accesses

Abstract

Adolescence is a gradual transition period between childhood and adulthood, characterized by greater sensitivity to rewarding stimuli. Consistently, demographic studies have shown that teenagers show a high prevalence of rewarding drugs use, mainly nicotine-containing products and cannabis. Clinical researches have associated the adolescence consume of nicotine and cannabis with a higher vulnerability to develop neuropsychiatric diseases in adulthood such as depression, schizophrenia, and drug addiction. Despite these evidence, it is difficult to conclusively prove causal relationships with longitudinal and retrospective clinical research in humans. Accordingly, preclinical animal models are indispensable tools to determine the causal relationship between early neurodevelopmental drug exposure and psychiatric disease risk. Preclinical rodent models have been widely used to research the neurobiological mechanisms underlying the vulnerability of the adolescent brain because the similarities in behavioral patterns and brain maturation processes with human adolescents. Particularly, both human teenager and adolescent rodents show similar patterns of DA maturation, and dysregulations in these neuronal circuits may induce phenotypes associated with psychiatric diseases.

This chapter will describe the THC and nicotine adolescent exposure methods in rats that induce a long-term dysregulation of the dopaminergic system. Furthermore, this chapter will detail the experimental protocol used in our laboratory to test the electrical activity of dopaminergic neurons. In addition, these methodologies include preclinical testing protocols for several neuropsychiatric behavioral phenotypes related to social cognition and motivation, memory processing, and anhedonia-like behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Spear LP (2000) The adolescent brain and age-related behavioral manifestations. 24(4). https://doi.org/10.1016/S0149-7634(00)00014-2

  2. World Health Organization (2019) WHO global report on trends in prevalence of tobacco use 2000–2025, 2nd ed. https://apps.who.int/iris/bitstream/handle/10665/272694/9789241514170-eng.pdf

  3. Saddleson ML, Kozlowski LT, Giovino GA, Homish GG, Mahoney MC, Goniewicz ML (2016) Assessing 30-day quantity-frequency of U.S. adolescent cigarette smoking as a predictor of adult smoking 14 years later. Drug Alcohol Depend 162:92–98. https://doi.org/10.1016/j.drugalcdep.2016.02.043

    Article  CAS  Google Scholar 

  4. Ambrose BK et al (2014) Perceptions of the relative harm of cigarettes and E-cigarettes among U.S. youth. Am J Prev Med 47(2 Suppl. 1):S53–S60. https://doi.org/10.1016/j.amepre.2014.04.016

    Article  Google Scholar 

  5. Jamal A (2000) Tobacco use among middle and high school students-United States, 1999. Conn Med 64(4):216–218. https://doi.org/10.15585/mmwr.mm6623a1

    Article  Google Scholar 

  6. Perikleous EP, Steiropoulos P, Paraskakis E, Constantinidis TC, Nena E (2018) E-cigarette use among adolescents: an overview of the literature and future perspectives. Front Public Health 6:1. https://doi.org/10.3389/fpubh.2018.00086. Frontiers Media S.A.

    Article  Google Scholar 

  7. United Nations Office on Drugs and Crime (2020) World drug report 2020: drug use and health consequences. https://wdr.unodc.org/wdr2020/field/WDR20_Booklet_2.pdf

  8. Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9(12):947–957. https://doi.org/10.1038/nrn2513

    Article  CAS  Google Scholar 

  9. Merikangas KR, Nakamura EF, Kessler RC (2009) Epidemiology of mental disorders in children and adolescents. Dialogues Clin Neurosci 11(1):7–20. https://doi.org/10.31887/dcns.2009.11.1/krmerikangas

    Article  Google Scholar 

  10. Schneider M (2008) Puberty as a highly vulnerable developmental period for the consequences of cannabis exposure. Addict Biol 13(2):253–263. https://doi.org/10.1111/j.1369-1600.2008.00110.x

    Article  Google Scholar 

  11. Schneider M (2013) Adolescence as a vulnerable period to alter rodent behavior. Cell Tissue Res 354(1):99–106. https://doi.org/10.1007/s00441-013-1581-2. Springer.

    Article  CAS  Google Scholar 

  12. Brook JS, Schuster E, Zhang C (2004) Cigarette smoking and depressive symptoms: a longitudinal study of adolescents and young adults. Psychol Rep 95(1):159–166. https://doi.org/10.2466/pr0.95.1.159-166

    Article  Google Scholar 

  13. Ranjit A et al (2019) Testing the reciprocal association between smoking and depressive symptoms from adolescence to adulthood: a longitudinal twin study. Drug Alcohol Depend 200:64–70. https://doi.org/10.1016/j.drugalcdep.2019.03.012

    Article  Google Scholar 

  14. Ranjit A, Latvala A, Kinnunen TH, Kaprio J, Korhonen T (2020) Depressive symptoms predict smoking cessation in a 20-year longitudinal study of adult twins. Addict Behav 108:106427. https://doi.org/10.1016/j.addbeh.2020.106427

    Article  Google Scholar 

  15. Choi WS, Patten CA, Christian Gillin J, Kaplan RM, Pierce JP (1997) Cigarette smoking predicts development of depressive symptoms among U.S. adolescents. Ann Behav Med 19(1):42–50. https://doi.org/10.1007/BF02883426

    Article  CAS  Google Scholar 

  16. Dalack GW, Meador-Woodruff JH (1996) Smoking, smoking withdrawal and schizophrenia: case reports and a review of the literature. Schizophr Res 22(2):133–141. https://doi.org/10.1016/S0920-9964(96)80441-5

    Article  CAS  Google Scholar 

  17. Hughes JR, Hatsukami DK, Mitchell JE, Dahlgren LA (1986) Prevalence of smoking among psychiatric outpatients. Am J Psychiatry 143(8):993–997. https://doi.org/10.1176/ajp.143.8.993

    Article  CAS  Google Scholar 

  18. Mustonen A et al (2018) Smokin‘ hot: adolescent smoking and the risk of psychosis. Acta Psychiatr Scand 138(1):5–14. https://doi.org/10.1111/acps.12863

    Article  CAS  Google Scholar 

  19. Weiser M et al (2004) Higher rates of cigarette smoking in male adolescents before the onset of schizophrenia: a historical-prospective cohort study. Am J Psychiatry 161(7):1219–1223. https://doi.org/10.1176/appi.ajp.161.7.1219

    Article  Google Scholar 

  20. Fergusson DM, Horwood LJ, Swain-Campbell N (2002) Cannabis use and psychosocial adjustment in adolescence and young adulthood. Addiction 97(9):1123–1135. https://doi.org/10.1046/j.1360-0443.2002.00103.x

    Article  Google Scholar 

  21. Andréasson S, Engström A, Allebeck P, Rydberg U (1987) Cannabis and schizophrenia a longitudinal study of Swedish conscripts. Lancet 330(8574):1483–1486. https://doi.org/10.1016/S0140-6736(87)92620-1

    Article  Google Scholar 

  22. Arseneault L, Cannon M, Poulton R, Murray R, Caspi A, Moffitt TE (2002) Cannabis use in adolescence and risk for adult psychosis: longitudinal prospective study. BMJ 325(7374):1212–1213. https://doi.org/10.1136/bmj.325.7374.1212

    Article  Google Scholar 

  23. Stefanis NC, Delespaul P, Henquet C, Bakoula C, Stefanis CN, Van Os J (2004) Early adolescent cannabis exposure and positive and negative dimensions of psychosis. Addiction 99(10):1333–1341. https://doi.org/10.1111/j.1360-0443.2004.00806.x

    Article  CAS  Google Scholar 

  24. Laviolette SR (2021) Exploring the impact of adolescent exposure to cannabinoids and nicotine on psychiatric risk: insights from translational animal models. Psychol Med 51(6):940–947. https://doi.org/10.1017/S0033291719003325. Cambridge University Press.

    Article  Google Scholar 

  25. Doremus-Fitzwater TL, Spear LP (2016) Reward-centricity and attenuated aversions: an adolescent phenotype emerging from studies in laboratory animals. Neurosci Biobehav Rev 70:121–134. https://doi.org/10.1016/j.neubiorev.2016.08.015

    Article  CAS  Google Scholar 

  26. Gardner M, Steinberg L (2005) Peer influence on risk taking, risk preference, and risky decision making in adolescence and adulthood: an experimental study. Dev Psychol 41(4):625–635. https://doi.org/10.1037/0012-1649.41.4.625

    Article  Google Scholar 

  27. Douglas LA, Varlinskaya EI, Spear LP (2004) Rewarding properties of social interactions in adolescent and adult male and female rats: impact of social versus isolate housing of subjects and partners. Dev Psychobiol 45(3):153–162. https://doi.org/10.1002/dev.20025

    Article  Google Scholar 

  28. Foulkes L, Blakemore SJ (2016) Is there heightened sensitivity to social reward in adolescence? Curr Opin Neurobiol 40:81–85. https://doi.org/10.1016/j.conb.2016.06.016. Elsevier Ltd.

    Article  CAS  Google Scholar 

  29. Desor JA, Beauchamp GK (1987) Longitudinal changes in sweet preferences in humans. Physiol Behav 39(5):639–641. https://doi.org/10.1016/0031-9384(87)90166-1

    Article  CAS  Google Scholar 

  30. Wilmouth CE, Spear LP (2009) Hedonic sensitivity in adolescent and adult rats: taste reactivity and voluntary sucrose consumption. Pharmacol Biochem Behav 92(4):566–573. https://doi.org/10.1016/j.pbb.2009.02.009

    Article  CAS  Google Scholar 

  31. Steinberg L, Cauffman E, Woolard J, Graham S, Banich M (2009) Are adolescents less mature than adults? Minors’ access to abortion, the juvenile death penalty, and the alleged APA ‘flip-flop. Am Psychol 64(7):583–594. https://doi.org/10.1037/a0014763

    Article  Google Scholar 

  32. Doremus-Fitzwater TL, Barreto M, Spear LP (2012) Age-related differences in impulsivity among adolescent and adult Sprague-Dawley rats. Behav Neurosci 126(5):735–741. https://doi.org/10.1037/a0029697

    Article  Google Scholar 

  33. Gogtay N et al (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci 101(21):8174–8179. https://doi.org/10.1073/pnas.0402680101

    Article  CAS  Google Scholar 

  34. Simmonds DJ, Hallquist MN, Asato M, Luna B (2014) Developmental stages and sex differences of white matter and behavioral development through adolescence: a longitudinal diffusion tensor imaging (DTI) study. Neuroimage 92:356–368. https://doi.org/10.1016/j.neuroimage.2013.12.044

    Article  Google Scholar 

  35. Weickert CS et al (2007) Postnatal alterations in dopaminergic markers in the human prefrontal cortex. Neuroscience 144(3):1109–1119. https://doi.org/10.1016/j.neuroscience.2006.10.009

    Article  CAS  Google Scholar 

  36. Larsen B, Luna B (2015) In vivo evidence of neurophysiological maturation of the human adolescent striatum. Dev Cogn Neurosci 12:74–85. https://doi.org/10.1016/j.dcn.2014.12.003

    Article  Google Scholar 

  37. Larsen B, Luna B (2018) Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci Biobehav Rev 94:179–195. https://doi.org/10.1016/j.neubiorev.2018.09.005

    Article  Google Scholar 

  38. Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW (1999) In vivo evidence for post-adolescent brain maturation in frontal and striatal regions [1]. Nat Neurosci 2(10):859–861. https://doi.org/10.1038/13154. Nature Publishing Group.

    Article  CAS  Google Scholar 

  39. Ernst M, Luciana M (2015) Neuroimaging of the dopamine/reward system in adolescent drug use. CNS Spectr 20(04):427–441. https://doi.org/10.1017/s1092852915000395

    Article  Google Scholar 

  40. Galvan A, Hare T, Voss H, Glover G, Casey BJ (2007) Risk-taking and the adolescent brain: who is at risk? Dev Sci 10(2):F8–F14. https://doi.org/10.1111/j.1467-7687.2006.00579.x

    Article  Google Scholar 

  41. Geier CF, Terwilliger R, Teslovich T, Velanova K, Luna B (2010) Immaturities in reward processing and its influence on inhibitory control in adolescence. Cereb Cortex 20(7):1613–1629. https://doi.org/10.1093/cercor/bhp225

    Article  CAS  Google Scholar 

  42. Wahlstrom D, Collins P, White T, Luciana M (2010) Developmental changes in dopamine neurotransmission in adolescence: behavioral implications and issues in assessment. Brain Cogn 72(1):146–159. https://doi.org/10.1016/j.bandc.2009.10.013. Academic Press.

    Article  Google Scholar 

  43. Pérez-Valenzuela E, Castillo-Faúndez R, Fuentealba JA (2019) Comparing dopaminergic dynamics in the dorsolateral striatum between adolescent and adult rats: effect of an acute dose of WIN55212-2. Brain Res 1719:235–242. https://doi.org/10.1016/j.brainres.2019.06.005

    Article  CAS  Google Scholar 

  44. McCutcheon JE, Marinelli M (2009) Age matters. Eur J Neurosci 29(5):997–1014. https://doi.org/10.1111/j.1460-9568.2009.06648.x

    Article  Google Scholar 

  45. Naneix F, Marchand AR, Di Scala G, Pape J-R, Coutureau E (2012) Parallel maturation of goal-directed behavior and dopaminergic systems during adolescence. J Neurosci 32(46):16223–16232. https://doi.org/10.1523/JNEUROSCI.3080-12.2012

    Article  CAS  Google Scholar 

  46. Padmanabhan A, Luna B (2014) Developmental imaging genetics: linking dopamine function to adolescent behavior. Brain Cogn 89:27–38. https://doi.org/10.1016/j.bandc.2013.09.011. Academic Press Inc.

    Article  Google Scholar 

  47. Badanich KA, Adler KJ, Kirstein CL (2006) Adolescents differ from adults in cocaine conditioned place preference and cocaine-induced dopamine in the nucleus accumbens septi. Eur J Pharmacol 550(1–3):95–106. https://doi.org/10.1016/j.ejphar.2006.08.034

    Article  CAS  Google Scholar 

  48. Spear LP (2013) Adolescent neurodevelopment. J Adolesc Health 52(2 Suppl. 2):S7–S13. https://doi.org/10.1016/j.jadohealth.2012.05.006

    Article  Google Scholar 

  49. Pérez-Valenzuela EJ, Andrés Coke ME, Grace AA, Fuentealba Evans JA (2021) Adolescent exposure to WIN 55212-2 render the nigrostriatal dopaminergic pathway activated during adulthood. Int J Neuropsychopharmacol 23(9):626–637. https://doi.org/10.1093/ijnp/pyaa053

    Article  CAS  Google Scholar 

  50. Gomes FV, Guimarães FS, Grace AA (2015) Effects of pubertal cannabinoid administration on attentional set-shifting and dopaminergic hyper- responsivity in a developmental disruption model of schizophrenia. Int J Neuropsychopharmacol:1–10. https://doi.org/10.1093/ijnp/pyu018

  51. Pistis M, Perra S, Pillolla G, Melis M, Muntoni AL, Gessa GL (2004) Adolescent exposure to cannabinoids induces long-lasting changes in the response to drugs of abuse of rat midbrain dopamine neurons. Biol Psychiatry 56(2):86–94. https://doi.org/10.1016/j.biopsych.2004.05.006

    Article  CAS  Google Scholar 

  52. Renard J et al (2017) Adolescent cannabinoid exposure induces a persistent sub-cortical hyper-dopaminergic state and associated molecular adaptations in the prefrontal cortex. Cereb Cortex 27(2):1297–1310. https://doi.org/10.1093/cercor/bhv335

    Article  Google Scholar 

  53. Renard J et al (2017) Adolescent THC exposure causes enduring prefrontal cortical disruption of GABAergic inhibition and dysregulation of sub-cortical dopamine function. Sci Rep 7(1):1–14. https://doi.org/10.1038/s41598-017-11645-8

    Article  CAS  Google Scholar 

  54. Higuera-Matas A et al (2010) Periadolescent exposure to cannabinoids alters the striatal and hippocampal dopaminergic system in the adult rat brain. Eur Neuropsychopharmacol 20(12):895–906. https://doi.org/10.1016/j.euroneuro.2010.06.017

    Article  CAS  Google Scholar 

  55. Bortolato M et al (2014) Juvenile cannabinoid treatment induces frontostriatal gliogenesis in Lewis rats. Eur Neuropsychopharmacol 24(6):974–985. https://doi.org/10.1016/j.euroneuro.2013.12.011

    Article  CAS  Google Scholar 

  56. Zamberletti E et al (2012) Gender-dependent behavioral and biochemical effects of adolescent delta-9-tetrahydrocannabinol in adult maternally deprived rats. Neuroscience 204:245–257. https://doi.org/10.1016/J.NEUROSCIENCE.2011.11.038

    Article  CAS  Google Scholar 

  57. Jobson CLM et al (2019) Adolescent nicotine exposure induces dysregulation of mesocorticolimbic activity states and depressive and anxiety-like prefrontal cortical molecular phenotypes persisting into adulthood. Cereb Cortex 29(7):3140–3153. https://doi.org/10.1093/cercor/bhy179

    Article  Google Scholar 

  58. Counotte DS et al (2009) Long-lasting cognitive deficits resulting from adolescent nicotine exposure in rats. Neuropsychopharmacology 34(2):299–306. https://doi.org/10.1038/npp.2008.96

    Article  CAS  Google Scholar 

  59. Gumbleton M, Benet LZ (1991) Drug metabolism and laboratory anesthetic protocols in the rat: examination of antipyrine pharmacokinetics. Pharm Res 8(4):544–546. https://doi.org/10.1023/A:1015827917684

    Article  CAS  Google Scholar 

  60. Howard SG, Feigenbaum JJ (1997) Effect of γ-hydroxybutyrate on central dopamine release in vivo: a microdialysis study in awake and anesthetized animals. Biochem Pharmacol 53(1):103–110. https://doi.org/10.1016/S0006-2952(96)00664-8

    Article  CAS  Google Scholar 

  61. Tepper JM, Creese I, Schwartz DH (1991) Stimulus-evoked changes in neostriatal dopamine levels in awake and anesthetized rats as measured by microdialysis. Brain Res 559(2):283–292. https://doi.org/10.1016/0006-8993(91)90013-L

    Article  CAS  Google Scholar 

  62. Carbone M et al (2010) Chemical characterisation of oxidative degradation products of Δ9-THC. Tetrahedron 66(49):9497–9501. https://doi.org/10.1016/j.tet.2010.10.025

    Article  CAS  Google Scholar 

  63. González S, Cebeira M, Fernández-Ruiz J (2005) Cannabinoid tolerance and dependence: a review of studies in laboratory animals. Pharmacol Biochem Behav 81(2 Spec. Iss):300–318. https://doi.org/10.1016/j.pbb.2005.01.028

    Article  CAS  Google Scholar 

  64. Rubino T et al (2009) The depressive phenotype induced in adult female rats by adolescent exposure to THC is associated with cognitive impairment and altered neuroplasticity in the prefrontal cortex. Neurotox Res 15(4):291–302. https://doi.org/10.1007/s12640-009-9031-3

    Article  CAS  Google Scholar 

  65. De Felice M et al (2021) L-theanine prevents long-term affective and cognitive side effects of adolescent Δ-9-tetrahydrocannabinol exposure and blocks associated molecular and neuronal abnormalities in the mesocorticolimbic circuitry. J Neurosci 41(4):739–750. https://doi.org/10.1523/JNEUROSCI.1050-20.2020

    Article  Google Scholar 

  66. Rubino T et al (2008) Chronic Δ9-tetrahydrocannabinol during adolescence provokes sex-dependent changes in the emotional profile in adult rats: behavioral and biochemical correlates. Neuropsychopharmacology 33(11):2760–2771. https://doi.org/10.1038/sj.npp.1301664

    Article  CAS  Google Scholar 

  67. Hill P, Haley NJ, Wynder EL (1983) Cigarette smoking: carboxyhemoglobin, plasma nicotine, cotinine and thiocyanate vs self-reported smoking data and cardiovascular disease. J Chronic Dis 36(6):439–449. https://doi.org/10.1016/0021-9681(83)90136-4

    Article  CAS  Google Scholar 

  68. Murrin LC, Ferrer JR, Wanyun Z, Haley NJ (1987) Nicotine administration to rats: methodological considerations. Life Sci 40(17):1699–1708. https://doi.org/10.1016/0024-3205(87)90020-8

    Article  CAS  Google Scholar 

  69. Hudson R et al (2021) Adolescent nicotine induces depressive and anxiogenic effects through ERK 1–2 and Akt-GSK-3 pathways and neuronal dysregulation in the nucleus accumbens. Addict Biol 26(2):e12891. https://doi.org/10.1111/adb.12891

    Article  CAS  Google Scholar 

  70. Liu MY et al (2018) Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat Protoc 13(7):1686–1698. https://doi.org/10.1038/s41596-018-0011-z

    Article  CAS  Google Scholar 

  71. Meyerolbersleben L, Winter C, Bernhardt N (2020) Dissociation of wanting and liking in the sucrose preference test in dopamine transporter overexpressing rats. Behav Brain Res 378:112244. https://doi.org/10.1016/j.bbr.2019.112244

    Article  CAS  Google Scholar 

  72. File SE, Seth P (2003) A review of 25 years of the social interaction test. Eur J Pharmacol 463(1–3):35–53. https://doi.org/10.1016/S0014-2999(03)01273-1. Elsevier.

    Article  CAS  Google Scholar 

  73. D’Esposito M, Postle BR (2015) The cognitive neuroscience of working memory. Annu Rev Psychol 66:115–142. https://doi.org/10.1146/annurev-psych-010814-015031

    Article  Google Scholar 

  74. Eich TS, Nee DE, Insel C, Malapani C, Smith EE (2014) Neural correlates of impaired cognitive control over working memory in schizophrenia. Biol Psychiatry 76(2):146–153. https://doi.org/10.1016/j.biopsych.2013.09.032

    Article  Google Scholar 

  75. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders. https://doi.org/10.1176/appi.books.9780890425596.744053

    Book  Google Scholar 

  76. Papp M, Willner P, Muscat R (1991) An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology (Berl) 104(2):255–259. https://doi.org/10.1007/BF02244188

    Article  CAS  Google Scholar 

  77. Wiborg O (2013) Chronic mild stress for modeling anhedonia. Cell Tissue Res 354(1):155–169. https://doi.org/10.1007/s00441-013-1664-0. Springer.

    Article  Google Scholar 

  78. Lee Y et al (2018) Excessive D1 dopamine receptor activation in the dorsal striatum promotes autistic-like behaviors. Mol Neurobiol 55(7):5658–5671. https://doi.org/10.1007/s12035-017-0770-5

    Article  CAS  Google Scholar 

  79. Espejo EF (2003) Prefrontocortical dopamine loss in rats delays long-term extinction of contextual conditioned fear, and reduces social interaction without affecting short-term social interaction memory. Neuropsychopharmacology 28(3):490–498. https://doi.org/10.1038/sj.npp.1300066

    Article  CAS  Google Scholar 

  80. Rodriguiz RM, Chu R, Caron MG, Wetsel WC (2004) Aberrant responses in social interaction of dopamine transporter knockout mice. Behav Brain Res 148(1–2):185–198. https://doi.org/10.1016/S0166-4328(03)00187-6

    Article  CAS  Google Scholar 

  81. Liu Q, Shi J, Lin R, Wen T (2017) Dopamine and dopamine receptor D1 associated with decreased social interaction. Behav Brain Res 324:51–57. https://doi.org/10.1016/j.bbr.2017.01.045

    Article  CAS  Google Scholar 

  82. Wilson CA, Koenig JI (2014) Social interaction and social withdrawal in rodents as readouts for investigating the negative symptoms of schizophrenia. Eur Neuropsychopharmacol 24(5):759–773. https://doi.org/10.1016/j.euroneuro.2013.11.008

    Article  CAS  Google Scholar 

  83. Iwata K (2019) Characterization of an animal model of autism and social interaction. Methods Mol Biol 1916:149–155. https://doi.org/10.1007/978-1-4939-8994-2_14. Humana Press Inc.

    Article  CAS  Google Scholar 

  84. Kupferberg A, Bicks L, Hasler G (2016) Social functioning in major depressive disorder. Neurosci Biobehav Rev 69:313–332. https://doi.org/10.1016/j.neubiorev.2016.07.002. Elsevier Ltd.

    Article  Google Scholar 

  85. Lu Q et al (2019) Chronic unpredictable mild stress-induced behavioral changes are coupled with dopaminergic hyperfunction and serotonergic hypofunction in mouse models of depression. Behav Brain Res 372:112053. https://doi.org/10.1016/j.bbr.2019.112053

    Article  CAS  Google Scholar 

  86. Harro J, Tõnissaar M, Eller M, Kask A, Oreland L (2001) Chronic variable stress and partial 5-HT denervation by parachloroamphetamine treatment in the rat: effects on behavior and monoamine neurochemistry. Brain Res 899(1–2):227–239. https://doi.org/10.1016/S0006-8993(01)02256-9

    Article  CAS  Google Scholar 

  87. Osborne AL, Solowij N, Babic I, Huang XF, Weston-Green K (2017) Improved social interaction, recognition and working memory with cannabidiol treatment in a prenatal infection (poly I:C) rat model. Neuropsychopharmacology 42(7):1447–1457. https://doi.org/10.1038/npp.2017.40

    Article  CAS  Google Scholar 

  88. Sams-Dodd F (1999) Phencyclidine in the social interaction test: an animal model of schizophrenia with face and predictive validity. Rev Neurosci 10(1):59–90. https://doi.org/10.1515/REVNEURO.1999.10.1.59. Freund Publishing House Ltd.

    Article  CAS  Google Scholar 

  89. Sams-Dodd F (2014) Phencyclidine in the social interaction test: an animal model of schizophrenia with face and predictive validity PhD project view project. https://doi.org/10.1515/REVNEURO.1999.10.1.59

  90. Sams-Dodd F (1996) Phencyclidine-induced stereotyped behaviour and social isolation in rats: a possible animal model of schizophrenia. Behav Pharmacol 7(1):3–23. https://doi.org/10.1097/00008877-199601000-00001

    Article  CAS  Google Scholar 

  91. Pandey DK, Pati D, Joshi A (2010) Chronic unpredictable stress: possible animal model of comorbid depression. Int J Preclin Pharm Res 1(1):54–63. Accessed: 7 May 2021. [Online]. Available: https://www.researchgate.net/publication/266142540.

    Google Scholar 

  92. Eagle AL, Fitzpatrick CJ, Perrine SA (2013) Single prolonged stress impairs social and object novelty recognition in rats. Behav Brain Res 256:591–597. https://doi.org/10.1016/j.bbr.2013.09.014

    Article  Google Scholar 

  93. Schneider M, Schömig E, Leweke FM (2008) Acute and chronic cannabinoid treatment differentially affects recognition memory and social behavior in pubertal and adult rats. Addict Biol 13(3–4):345–357. https://doi.org/10.1111/j.1369-1600.2008.00117.x

    Article  CAS  Google Scholar 

  94. Hodges TE, Baumbach JL, Marcolin ML, Bredewold R, Veenema AH, McCormick CM (2017) Social instability stress in adolescent male rats reduces social interaction and social recognition performance and increases oxytocin receptor binding. Neuroscience 359:172–182. https://doi.org/10.1016/j.neuroscience.2017.07.032

    Article  CAS  Google Scholar 

  95. Holman PJ et al (2021) Altered social recognition memory and hypothalamic neuropeptide expression in adolescent male and female rats following prenatal alcohol exposure and/or early-life adversity. Psychoneuroendocrinology 126:105146. https://doi.org/10.1016/j.psyneuen.2021.105146

    Article  CAS  Google Scholar 

  96. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31(1):47–59. https://doi.org/10.1016/0166-4328(88)90157-X

    Article  CAS  Google Scholar 

  97. Cohen SJ, Stackman RW (2015) Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behav Brain Res 285:105–117. https://doi.org/10.1016/J.BBR.2014.08.002

    Article  Google Scholar 

  98. Naef M, Müller U, Linssen A, Clark L, Robbins TW, Eisenegger C (2017) Effects of dopamine D2/D3 receptor antagonism on human planning and spatial working memory. Transl Psychiatry 7(4):e1107. https://doi.org/10.1038/tp.2017.56

    Article  CAS  Google Scholar 

  99. Ott T, Nieder A (2019. . Elsevier Ltd.) Dopamine and cognitive control in prefrontal cortex. Trends Cogn Sci 23(3):213–234. https://doi.org/10.1016/j.tics.2018.12.006

    Article  Google Scholar 

  100. Chatterjee I et al (2019) Identification of brain regions associated with working memory deficit in schizophrenia [version 1; peer review: 2 approved]. F1000Research 8:124. https://doi.org/10.12688/f1000research.17731.1

    Article  Google Scholar 

  101. Hill EL (2004) Executive dysfunction in autism. Trends Cogn Sci 8(1):26–32. https://doi.org/10.1016/j.tics.2003.11.003. Elsevier Ltd.

    Article  Google Scholar 

  102. Lai MC, Lombardo MV, Baron-Cohen S (2014) Autism. The Lancet 383(9920):896–910. https://doi.org/10.1016/S0140-6736(13)61539-1

    Article  Google Scholar 

  103. Knight MJ, Baune BT (2018) Cognitive dysfunction in major depressive disorder. Curr Opin Psychiatry 31(1):26–31. https://doi.org/10.1097/YCO.0000000000000378

    Article  Google Scholar 

  104. Floresco SB, Magyar O (2006) Mesocortical dopamine modulation of executive functions: beyond working memory. Psychopharmacology (Berl) 188(4):567–585. https://doi.org/10.1007/s00213-006-0404-5

    Article  CAS  Google Scholar 

  105. Salamone JD, Pardo M, Yohn SE, López-Cruz L, SanMiguel N, Correa M (2015) Mesolimbic dopamine and the regulation of motivated behavior. Curr Top Behav Neurosci 27:231–257. https://doi.org/10.1007/7854_2015_383

    Article  Google Scholar 

  106. Baik J-H (2013) Dopamine signaling in reward-related behaviors. Front Neural Circuits 7:152. https://doi.org/10.3389/fncir.2013.00152

    Article  CAS  Google Scholar 

  107. Gomes FV, Rincón-Cortés M, Grace AA (2016) Adolescence as a period of vulnerability and intervention in schizophrenia: insights from the MAM model. Neurosci Biobehav Rev:1–11. https://doi.org/10.1016/j.neubiorev.2016.05.030

  108. Bunney BS, Walters JR, Roth RH, Aghajanian GK (1973) Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther 185(3):560–571

    CAS  Google Scholar 

  109. Aghajanian GK, Bunney BS (1973) Central dopaminergic neurons: neurophysiological identification and responses to drugs. Front Catech Res:643–648. https://doi.org/10.1016/B978-0-08-017922-3.50120-9

  110. Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 4(11):2866–2876. https://doi.org/10.1523/JNEUROSCI.04-11-02866.1984

    Article  CAS  Google Scholar 

  111. Hyland BI, Reynolds JNJ, Hay J, Perk CG, Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114(2):475–492. https://doi.org/10.1016/S0306-4522(02)00267-1

    Article  CAS  Google Scholar 

  112. Goto Y, Otani S, Grace AA (2007) The Yin and Yang of dopamine release: a new perspective. Neuropharmacology 53(5):583–587. https://doi.org/10.1016/j.neuropharm.2007.07.007

    Article  CAS  Google Scholar 

  113. Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13(3):900–913. https://doi.org/10.1523/JNEUROSCI.13-03-00900.1993

    Article  CAS  Google Scholar 

  114. Tobler PN, Dickinson A, Schultz W (2003) Coding of predicted reward omission by dopamine neurons in a conditioned inhibition paradigm. J Neurosci 23(32):10402–10410. https://doi.org/10.1523/JNEUROSCI.23-32-10402.2003

    Article  CAS  Google Scholar 

  115. Ungless MA, Magill PJ, Bolam JP (2004) Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science (80- ) 303(5666):2040–2042. https://doi.org/10.1126/SCIENCE.1093360/SUPPL_FILE/UNGLESS.SOM.PDF

    Article  CAS  Google Scholar 

  116. Robinson MJF, Fischer AM, Ahuja A, Lesser EN, Maniates H (2016) Roles of ‘wanting’; and ‘liking’ in motivating behavior: gambling, food, and drug addictions. Curr Top Behav Neurosci 27:105–136. https://doi.org/10.1007/7854_2015_387

    Article  CAS  Google Scholar 

  117. Everitt BJ, Robbins TW (2016) Drug addiction: updating actions to habits to compulsions ten years on. Annu Rev Psychol 67(1):23–50. https://doi.org/10.1146/annurev-psych-122414-033457

    Article  Google Scholar 

  118. Chang CH, Grace AA (2014) Amygdala-ventral pallidum pathway decreases dopamine activity after chronic mild stress in rats. Biol Psychiatry 76(3):223–230. https://doi.org/10.1016/j.biopsych.2013.09.020

    Article  CAS  Google Scholar 

  119. Palacios RD y, Verhoye M, Henningsen K, Wiborg O, Van der Linden A (2014) Diffusion kurtosis imaging and high-resolution MRI demonstrate structural aberrations of caudate putamen and amygdala after chronic mild stress. PLoS One 9(4):e95077. https://doi.org/10.1371/JOURNAL.PONE.0095077

    Article  Google Scholar 

  120. Henry DJ, Greene MA, White FJ (1989) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: repeated administration. J Pharmacol Exp Ther 251(3):833–839

    CAS  Google Scholar 

  121. Wanat MJ, Willuhn I, Clark JJ, Phillips PEM (2009) Phasic dopamine release in appetitive behaviors and drug addiction. Curr Drug Abuse Rev 2:0–000

    Article  CAS  Google Scholar 

  122. Tost H, Alam T, Meyer-Lindenberg A (2010) Dopamine and psychosis: theory, pathomechanisms and intermediate phenotypes. Neurosci Biobehav Rev 34(5):689–700. https://doi.org/10.1016/J.NEUBIOREV.2009.06.005

    Article  CAS  Google Scholar 

  123. Grace AA (2010) Dopamine system dysregulation by the ventral subiculum as the common pathophysiological basis for schizophrenia psychosis, psychostimulant abuse, and stress. Neurotox Res 18(3–4):367–376. https://doi.org/10.1007/S12640-010-9154-6/FIGURES/3

    Article  CAS  Google Scholar 

  124. Marinelli M, Cooper DC, Baker LK, White FJ (2003) Impulse activity of midbrain dopamine neurons modulates drug-seeking behavior. Psychopharmacology (Berl) 168(1–2):84–98. https://doi.org/10.1007/S00213-003-1491-1/FIGURES/10

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Laviolette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Perez-Valenzuela, E., Laviolette, S.R. (2023). Preclinical Models of THC and Nicotine Exposure During Adolescent Brain Development: Modeling Neuropsychiatric Phenotypes Related to Dopaminergic Transmission. In: Fuentealba-Evans, J.A., Henny, P. (eds) Dopaminergic System Function and Dysfunction: Experimental Approaches. Neuromethods, vol 193. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2799-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2799-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2798-3

  • Online ISBN: 978-1-0716-2799-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics