Abstract
Adolescence is a gradual transition period between childhood and adulthood, characterized by greater sensitivity to rewarding stimuli. Consistently, demographic studies have shown that teenagers show a high prevalence of rewarding drugs use, mainly nicotine-containing products and cannabis. Clinical researches have associated the adolescence consume of nicotine and cannabis with a higher vulnerability to develop neuropsychiatric diseases in adulthood such as depression, schizophrenia, and drug addiction. Despite these evidence, it is difficult to conclusively prove causal relationships with longitudinal and retrospective clinical research in humans. Accordingly, preclinical animal models are indispensable tools to determine the causal relationship between early neurodevelopmental drug exposure and psychiatric disease risk. Preclinical rodent models have been widely used to research the neurobiological mechanisms underlying the vulnerability of the adolescent brain because the similarities in behavioral patterns and brain maturation processes with human adolescents. Particularly, both human teenager and adolescent rodents show similar patterns of DA maturation, and dysregulations in these neuronal circuits may induce phenotypes associated with psychiatric diseases.
This chapter will describe the THC and nicotine adolescent exposure methods in rats that induce a long-term dysregulation of the dopaminergic system. Furthermore, this chapter will detail the experimental protocol used in our laboratory to test the electrical activity of dopaminergic neurons. In addition, these methodologies include preclinical testing protocols for several neuropsychiatric behavioral phenotypes related to social cognition and motivation, memory processing, and anhedonia-like behaviors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Spear LP (2000) The adolescent brain and age-related behavioral manifestations. 24(4). https://doi.org/10.1016/S0149-7634(00)00014-2
World Health Organization (2019) WHO global report on trends in prevalence of tobacco use 2000–2025, 2nd ed. https://apps.who.int/iris/bitstream/handle/10665/272694/9789241514170-eng.pdf
Saddleson ML, Kozlowski LT, Giovino GA, Homish GG, Mahoney MC, Goniewicz ML (2016) Assessing 30-day quantity-frequency of U.S. adolescent cigarette smoking as a predictor of adult smoking 14 years later. Drug Alcohol Depend 162:92–98. https://doi.org/10.1016/j.drugalcdep.2016.02.043
Ambrose BK et al (2014) Perceptions of the relative harm of cigarettes and E-cigarettes among U.S. youth. Am J Prev Med 47(2 Suppl. 1):S53–S60. https://doi.org/10.1016/j.amepre.2014.04.016
Jamal A (2000) Tobacco use among middle and high school students-United States, 1999. Conn Med 64(4):216–218. https://doi.org/10.15585/mmwr.mm6623a1
Perikleous EP, Steiropoulos P, Paraskakis E, Constantinidis TC, Nena E (2018) E-cigarette use among adolescents: an overview of the literature and future perspectives. Front Public Health 6:1. https://doi.org/10.3389/fpubh.2018.00086. Frontiers Media S.A.
United Nations Office on Drugs and Crime (2020) World drug report 2020: drug use and health consequences. https://wdr.unodc.org/wdr2020/field/WDR20_Booklet_2.pdf
Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9(12):947–957. https://doi.org/10.1038/nrn2513
Merikangas KR, Nakamura EF, Kessler RC (2009) Epidemiology of mental disorders in children and adolescents. Dialogues Clin Neurosci 11(1):7–20. https://doi.org/10.31887/dcns.2009.11.1/krmerikangas
Schneider M (2008) Puberty as a highly vulnerable developmental period for the consequences of cannabis exposure. Addict Biol 13(2):253–263. https://doi.org/10.1111/j.1369-1600.2008.00110.x
Schneider M (2013) Adolescence as a vulnerable period to alter rodent behavior. Cell Tissue Res 354(1):99–106. https://doi.org/10.1007/s00441-013-1581-2. Springer.
Brook JS, Schuster E, Zhang C (2004) Cigarette smoking and depressive symptoms: a longitudinal study of adolescents and young adults. Psychol Rep 95(1):159–166. https://doi.org/10.2466/pr0.95.1.159-166
Ranjit A et al (2019) Testing the reciprocal association between smoking and depressive symptoms from adolescence to adulthood: a longitudinal twin study. Drug Alcohol Depend 200:64–70. https://doi.org/10.1016/j.drugalcdep.2019.03.012
Ranjit A, Latvala A, Kinnunen TH, Kaprio J, Korhonen T (2020) Depressive symptoms predict smoking cessation in a 20-year longitudinal study of adult twins. Addict Behav 108:106427. https://doi.org/10.1016/j.addbeh.2020.106427
Choi WS, Patten CA, Christian Gillin J, Kaplan RM, Pierce JP (1997) Cigarette smoking predicts development of depressive symptoms among U.S. adolescents. Ann Behav Med 19(1):42–50. https://doi.org/10.1007/BF02883426
Dalack GW, Meador-Woodruff JH (1996) Smoking, smoking withdrawal and schizophrenia: case reports and a review of the literature. Schizophr Res 22(2):133–141. https://doi.org/10.1016/S0920-9964(96)80441-5
Hughes JR, Hatsukami DK, Mitchell JE, Dahlgren LA (1986) Prevalence of smoking among psychiatric outpatients. Am J Psychiatry 143(8):993–997. https://doi.org/10.1176/ajp.143.8.993
Mustonen A et al (2018) Smokin‘ hot: adolescent smoking and the risk of psychosis. Acta Psychiatr Scand 138(1):5–14. https://doi.org/10.1111/acps.12863
Weiser M et al (2004) Higher rates of cigarette smoking in male adolescents before the onset of schizophrenia: a historical-prospective cohort study. Am J Psychiatry 161(7):1219–1223. https://doi.org/10.1176/appi.ajp.161.7.1219
Fergusson DM, Horwood LJ, Swain-Campbell N (2002) Cannabis use and psychosocial adjustment in adolescence and young adulthood. Addiction 97(9):1123–1135. https://doi.org/10.1046/j.1360-0443.2002.00103.x
Andréasson S, Engström A, Allebeck P, Rydberg U (1987) Cannabis and schizophrenia a longitudinal study of Swedish conscripts. Lancet 330(8574):1483–1486. https://doi.org/10.1016/S0140-6736(87)92620-1
Arseneault L, Cannon M, Poulton R, Murray R, Caspi A, Moffitt TE (2002) Cannabis use in adolescence and risk for adult psychosis: longitudinal prospective study. BMJ 325(7374):1212–1213. https://doi.org/10.1136/bmj.325.7374.1212
Stefanis NC, Delespaul P, Henquet C, Bakoula C, Stefanis CN, Van Os J (2004) Early adolescent cannabis exposure and positive and negative dimensions of psychosis. Addiction 99(10):1333–1341. https://doi.org/10.1111/j.1360-0443.2004.00806.x
Laviolette SR (2021) Exploring the impact of adolescent exposure to cannabinoids and nicotine on psychiatric risk: insights from translational animal models. Psychol Med 51(6):940–947. https://doi.org/10.1017/S0033291719003325. Cambridge University Press.
Doremus-Fitzwater TL, Spear LP (2016) Reward-centricity and attenuated aversions: an adolescent phenotype emerging from studies in laboratory animals. Neurosci Biobehav Rev 70:121–134. https://doi.org/10.1016/j.neubiorev.2016.08.015
Gardner M, Steinberg L (2005) Peer influence on risk taking, risk preference, and risky decision making in adolescence and adulthood: an experimental study. Dev Psychol 41(4):625–635. https://doi.org/10.1037/0012-1649.41.4.625
Douglas LA, Varlinskaya EI, Spear LP (2004) Rewarding properties of social interactions in adolescent and adult male and female rats: impact of social versus isolate housing of subjects and partners. Dev Psychobiol 45(3):153–162. https://doi.org/10.1002/dev.20025
Foulkes L, Blakemore SJ (2016) Is there heightened sensitivity to social reward in adolescence? Curr Opin Neurobiol 40:81–85. https://doi.org/10.1016/j.conb.2016.06.016. Elsevier Ltd.
Desor JA, Beauchamp GK (1987) Longitudinal changes in sweet preferences in humans. Physiol Behav 39(5):639–641. https://doi.org/10.1016/0031-9384(87)90166-1
Wilmouth CE, Spear LP (2009) Hedonic sensitivity in adolescent and adult rats: taste reactivity and voluntary sucrose consumption. Pharmacol Biochem Behav 92(4):566–573. https://doi.org/10.1016/j.pbb.2009.02.009
Steinberg L, Cauffman E, Woolard J, Graham S, Banich M (2009) Are adolescents less mature than adults? Minors’ access to abortion, the juvenile death penalty, and the alleged APA ‘flip-flop. Am Psychol 64(7):583–594. https://doi.org/10.1037/a0014763
Doremus-Fitzwater TL, Barreto M, Spear LP (2012) Age-related differences in impulsivity among adolescent and adult Sprague-Dawley rats. Behav Neurosci 126(5):735–741. https://doi.org/10.1037/a0029697
Gogtay N et al (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci 101(21):8174–8179. https://doi.org/10.1073/pnas.0402680101
Simmonds DJ, Hallquist MN, Asato M, Luna B (2014) Developmental stages and sex differences of white matter and behavioral development through adolescence: a longitudinal diffusion tensor imaging (DTI) study. Neuroimage 92:356–368. https://doi.org/10.1016/j.neuroimage.2013.12.044
Weickert CS et al (2007) Postnatal alterations in dopaminergic markers in the human prefrontal cortex. Neuroscience 144(3):1109–1119. https://doi.org/10.1016/j.neuroscience.2006.10.009
Larsen B, Luna B (2015) In vivo evidence of neurophysiological maturation of the human adolescent striatum. Dev Cogn Neurosci 12:74–85. https://doi.org/10.1016/j.dcn.2014.12.003
Larsen B, Luna B (2018) Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci Biobehav Rev 94:179–195. https://doi.org/10.1016/j.neubiorev.2018.09.005
Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW (1999) In vivo evidence for post-adolescent brain maturation in frontal and striatal regions [1]. Nat Neurosci 2(10):859–861. https://doi.org/10.1038/13154. Nature Publishing Group.
Ernst M, Luciana M (2015) Neuroimaging of the dopamine/reward system in adolescent drug use. CNS Spectr 20(04):427–441. https://doi.org/10.1017/s1092852915000395
Galvan A, Hare T, Voss H, Glover G, Casey BJ (2007) Risk-taking and the adolescent brain: who is at risk? Dev Sci 10(2):F8–F14. https://doi.org/10.1111/j.1467-7687.2006.00579.x
Geier CF, Terwilliger R, Teslovich T, Velanova K, Luna B (2010) Immaturities in reward processing and its influence on inhibitory control in adolescence. Cereb Cortex 20(7):1613–1629. https://doi.org/10.1093/cercor/bhp225
Wahlstrom D, Collins P, White T, Luciana M (2010) Developmental changes in dopamine neurotransmission in adolescence: behavioral implications and issues in assessment. Brain Cogn 72(1):146–159. https://doi.org/10.1016/j.bandc.2009.10.013. Academic Press.
Pérez-Valenzuela E, Castillo-Faúndez R, Fuentealba JA (2019) Comparing dopaminergic dynamics in the dorsolateral striatum between adolescent and adult rats: effect of an acute dose of WIN55212-2. Brain Res 1719:235–242. https://doi.org/10.1016/j.brainres.2019.06.005
McCutcheon JE, Marinelli M (2009) Age matters. Eur J Neurosci 29(5):997–1014. https://doi.org/10.1111/j.1460-9568.2009.06648.x
Naneix F, Marchand AR, Di Scala G, Pape J-R, Coutureau E (2012) Parallel maturation of goal-directed behavior and dopaminergic systems during adolescence. J Neurosci 32(46):16223–16232. https://doi.org/10.1523/JNEUROSCI.3080-12.2012
Padmanabhan A, Luna B (2014) Developmental imaging genetics: linking dopamine function to adolescent behavior. Brain Cogn 89:27–38. https://doi.org/10.1016/j.bandc.2013.09.011. Academic Press Inc.
Badanich KA, Adler KJ, Kirstein CL (2006) Adolescents differ from adults in cocaine conditioned place preference and cocaine-induced dopamine in the nucleus accumbens septi. Eur J Pharmacol 550(1–3):95–106. https://doi.org/10.1016/j.ejphar.2006.08.034
Spear LP (2013) Adolescent neurodevelopment. J Adolesc Health 52(2 Suppl. 2):S7–S13. https://doi.org/10.1016/j.jadohealth.2012.05.006
Pérez-Valenzuela EJ, Andrés Coke ME, Grace AA, Fuentealba Evans JA (2021) Adolescent exposure to WIN 55212-2 render the nigrostriatal dopaminergic pathway activated during adulthood. Int J Neuropsychopharmacol 23(9):626–637. https://doi.org/10.1093/ijnp/pyaa053
Gomes FV, Guimarães FS, Grace AA (2015) Effects of pubertal cannabinoid administration on attentional set-shifting and dopaminergic hyper- responsivity in a developmental disruption model of schizophrenia. Int J Neuropsychopharmacol:1–10. https://doi.org/10.1093/ijnp/pyu018
Pistis M, Perra S, Pillolla G, Melis M, Muntoni AL, Gessa GL (2004) Adolescent exposure to cannabinoids induces long-lasting changes in the response to drugs of abuse of rat midbrain dopamine neurons. Biol Psychiatry 56(2):86–94. https://doi.org/10.1016/j.biopsych.2004.05.006
Renard J et al (2017) Adolescent cannabinoid exposure induces a persistent sub-cortical hyper-dopaminergic state and associated molecular adaptations in the prefrontal cortex. Cereb Cortex 27(2):1297–1310. https://doi.org/10.1093/cercor/bhv335
Renard J et al (2017) Adolescent THC exposure causes enduring prefrontal cortical disruption of GABAergic inhibition and dysregulation of sub-cortical dopamine function. Sci Rep 7(1):1–14. https://doi.org/10.1038/s41598-017-11645-8
Higuera-Matas A et al (2010) Periadolescent exposure to cannabinoids alters the striatal and hippocampal dopaminergic system in the adult rat brain. Eur Neuropsychopharmacol 20(12):895–906. https://doi.org/10.1016/j.euroneuro.2010.06.017
Bortolato M et al (2014) Juvenile cannabinoid treatment induces frontostriatal gliogenesis in Lewis rats. Eur Neuropsychopharmacol 24(6):974–985. https://doi.org/10.1016/j.euroneuro.2013.12.011
Zamberletti E et al (2012) Gender-dependent behavioral and biochemical effects of adolescent delta-9-tetrahydrocannabinol in adult maternally deprived rats. Neuroscience 204:245–257. https://doi.org/10.1016/J.NEUROSCIENCE.2011.11.038
Jobson CLM et al (2019) Adolescent nicotine exposure induces dysregulation of mesocorticolimbic activity states and depressive and anxiety-like prefrontal cortical molecular phenotypes persisting into adulthood. Cereb Cortex 29(7):3140–3153. https://doi.org/10.1093/cercor/bhy179
Counotte DS et al (2009) Long-lasting cognitive deficits resulting from adolescent nicotine exposure in rats. Neuropsychopharmacology 34(2):299–306. https://doi.org/10.1038/npp.2008.96
Gumbleton M, Benet LZ (1991) Drug metabolism and laboratory anesthetic protocols in the rat: examination of antipyrine pharmacokinetics. Pharm Res 8(4):544–546. https://doi.org/10.1023/A:1015827917684
Howard SG, Feigenbaum JJ (1997) Effect of γ-hydroxybutyrate on central dopamine release in vivo: a microdialysis study in awake and anesthetized animals. Biochem Pharmacol 53(1):103–110. https://doi.org/10.1016/S0006-2952(96)00664-8
Tepper JM, Creese I, Schwartz DH (1991) Stimulus-evoked changes in neostriatal dopamine levels in awake and anesthetized rats as measured by microdialysis. Brain Res 559(2):283–292. https://doi.org/10.1016/0006-8993(91)90013-L
Carbone M et al (2010) Chemical characterisation of oxidative degradation products of Δ9-THC. Tetrahedron 66(49):9497–9501. https://doi.org/10.1016/j.tet.2010.10.025
González S, Cebeira M, Fernández-Ruiz J (2005) Cannabinoid tolerance and dependence: a review of studies in laboratory animals. Pharmacol Biochem Behav 81(2 Spec. Iss):300–318. https://doi.org/10.1016/j.pbb.2005.01.028
Rubino T et al (2009) The depressive phenotype induced in adult female rats by adolescent exposure to THC is associated with cognitive impairment and altered neuroplasticity in the prefrontal cortex. Neurotox Res 15(4):291–302. https://doi.org/10.1007/s12640-009-9031-3
De Felice M et al (2021) L-theanine prevents long-term affective and cognitive side effects of adolescent Δ-9-tetrahydrocannabinol exposure and blocks associated molecular and neuronal abnormalities in the mesocorticolimbic circuitry. J Neurosci 41(4):739–750. https://doi.org/10.1523/JNEUROSCI.1050-20.2020
Rubino T et al (2008) Chronic Δ9-tetrahydrocannabinol during adolescence provokes sex-dependent changes in the emotional profile in adult rats: behavioral and biochemical correlates. Neuropsychopharmacology 33(11):2760–2771. https://doi.org/10.1038/sj.npp.1301664
Hill P, Haley NJ, Wynder EL (1983) Cigarette smoking: carboxyhemoglobin, plasma nicotine, cotinine and thiocyanate vs self-reported smoking data and cardiovascular disease. J Chronic Dis 36(6):439–449. https://doi.org/10.1016/0021-9681(83)90136-4
Murrin LC, Ferrer JR, Wanyun Z, Haley NJ (1987) Nicotine administration to rats: methodological considerations. Life Sci 40(17):1699–1708. https://doi.org/10.1016/0024-3205(87)90020-8
Hudson R et al (2021) Adolescent nicotine induces depressive and anxiogenic effects through ERK 1–2 and Akt-GSK-3 pathways and neuronal dysregulation in the nucleus accumbens. Addict Biol 26(2):e12891. https://doi.org/10.1111/adb.12891
Liu MY et al (2018) Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat Protoc 13(7):1686–1698. https://doi.org/10.1038/s41596-018-0011-z
Meyerolbersleben L, Winter C, Bernhardt N (2020) Dissociation of wanting and liking in the sucrose preference test in dopamine transporter overexpressing rats. Behav Brain Res 378:112244. https://doi.org/10.1016/j.bbr.2019.112244
File SE, Seth P (2003) A review of 25 years of the social interaction test. Eur J Pharmacol 463(1–3):35–53. https://doi.org/10.1016/S0014-2999(03)01273-1. Elsevier.
D’Esposito M, Postle BR (2015) The cognitive neuroscience of working memory. Annu Rev Psychol 66:115–142. https://doi.org/10.1146/annurev-psych-010814-015031
Eich TS, Nee DE, Insel C, Malapani C, Smith EE (2014) Neural correlates of impaired cognitive control over working memory in schizophrenia. Biol Psychiatry 76(2):146–153. https://doi.org/10.1016/j.biopsych.2013.09.032
American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders. https://doi.org/10.1176/appi.books.9780890425596.744053
Papp M, Willner P, Muscat R (1991) An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology (Berl) 104(2):255–259. https://doi.org/10.1007/BF02244188
Wiborg O (2013) Chronic mild stress for modeling anhedonia. Cell Tissue Res 354(1):155–169. https://doi.org/10.1007/s00441-013-1664-0. Springer.
Lee Y et al (2018) Excessive D1 dopamine receptor activation in the dorsal striatum promotes autistic-like behaviors. Mol Neurobiol 55(7):5658–5671. https://doi.org/10.1007/s12035-017-0770-5
Espejo EF (2003) Prefrontocortical dopamine loss in rats delays long-term extinction of contextual conditioned fear, and reduces social interaction without affecting short-term social interaction memory. Neuropsychopharmacology 28(3):490–498. https://doi.org/10.1038/sj.npp.1300066
Rodriguiz RM, Chu R, Caron MG, Wetsel WC (2004) Aberrant responses in social interaction of dopamine transporter knockout mice. Behav Brain Res 148(1–2):185–198. https://doi.org/10.1016/S0166-4328(03)00187-6
Liu Q, Shi J, Lin R, Wen T (2017) Dopamine and dopamine receptor D1 associated with decreased social interaction. Behav Brain Res 324:51–57. https://doi.org/10.1016/j.bbr.2017.01.045
Wilson CA, Koenig JI (2014) Social interaction and social withdrawal in rodents as readouts for investigating the negative symptoms of schizophrenia. Eur Neuropsychopharmacol 24(5):759–773. https://doi.org/10.1016/j.euroneuro.2013.11.008
Iwata K (2019) Characterization of an animal model of autism and social interaction. Methods Mol Biol 1916:149–155. https://doi.org/10.1007/978-1-4939-8994-2_14. Humana Press Inc.
Kupferberg A, Bicks L, Hasler G (2016) Social functioning in major depressive disorder. Neurosci Biobehav Rev 69:313–332. https://doi.org/10.1016/j.neubiorev.2016.07.002. Elsevier Ltd.
Lu Q et al (2019) Chronic unpredictable mild stress-induced behavioral changes are coupled with dopaminergic hyperfunction and serotonergic hypofunction in mouse models of depression. Behav Brain Res 372:112053. https://doi.org/10.1016/j.bbr.2019.112053
Harro J, Tõnissaar M, Eller M, Kask A, Oreland L (2001) Chronic variable stress and partial 5-HT denervation by parachloroamphetamine treatment in the rat: effects on behavior and monoamine neurochemistry. Brain Res 899(1–2):227–239. https://doi.org/10.1016/S0006-8993(01)02256-9
Osborne AL, Solowij N, Babic I, Huang XF, Weston-Green K (2017) Improved social interaction, recognition and working memory with cannabidiol treatment in a prenatal infection (poly I:C) rat model. Neuropsychopharmacology 42(7):1447–1457. https://doi.org/10.1038/npp.2017.40
Sams-Dodd F (1999) Phencyclidine in the social interaction test: an animal model of schizophrenia with face and predictive validity. Rev Neurosci 10(1):59–90. https://doi.org/10.1515/REVNEURO.1999.10.1.59. Freund Publishing House Ltd.
Sams-Dodd F (2014) Phencyclidine in the social interaction test: an animal model of schizophrenia with face and predictive validity PhD project view project. https://doi.org/10.1515/REVNEURO.1999.10.1.59
Sams-Dodd F (1996) Phencyclidine-induced stereotyped behaviour and social isolation in rats: a possible animal model of schizophrenia. Behav Pharmacol 7(1):3–23. https://doi.org/10.1097/00008877-199601000-00001
Pandey DK, Pati D, Joshi A (2010) Chronic unpredictable stress: possible animal model of comorbid depression. Int J Preclin Pharm Res 1(1):54–63. Accessed: 7 May 2021. [Online]. Available: https://www.researchgate.net/publication/266142540.
Eagle AL, Fitzpatrick CJ, Perrine SA (2013) Single prolonged stress impairs social and object novelty recognition in rats. Behav Brain Res 256:591–597. https://doi.org/10.1016/j.bbr.2013.09.014
Schneider M, Schömig E, Leweke FM (2008) Acute and chronic cannabinoid treatment differentially affects recognition memory and social behavior in pubertal and adult rats. Addict Biol 13(3–4):345–357. https://doi.org/10.1111/j.1369-1600.2008.00117.x
Hodges TE, Baumbach JL, Marcolin ML, Bredewold R, Veenema AH, McCormick CM (2017) Social instability stress in adolescent male rats reduces social interaction and social recognition performance and increases oxytocin receptor binding. Neuroscience 359:172–182. https://doi.org/10.1016/j.neuroscience.2017.07.032
Holman PJ et al (2021) Altered social recognition memory and hypothalamic neuropeptide expression in adolescent male and female rats following prenatal alcohol exposure and/or early-life adversity. Psychoneuroendocrinology 126:105146. https://doi.org/10.1016/j.psyneuen.2021.105146
Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31(1):47–59. https://doi.org/10.1016/0166-4328(88)90157-X
Cohen SJ, Stackman RW (2015) Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behav Brain Res 285:105–117. https://doi.org/10.1016/J.BBR.2014.08.002
Naef M, Müller U, Linssen A, Clark L, Robbins TW, Eisenegger C (2017) Effects of dopamine D2/D3 receptor antagonism on human planning and spatial working memory. Transl Psychiatry 7(4):e1107. https://doi.org/10.1038/tp.2017.56
Ott T, Nieder A (2019. . Elsevier Ltd.) Dopamine and cognitive control in prefrontal cortex. Trends Cogn Sci 23(3):213–234. https://doi.org/10.1016/j.tics.2018.12.006
Chatterjee I et al (2019) Identification of brain regions associated with working memory deficit in schizophrenia [version 1; peer review: 2 approved]. F1000Research 8:124. https://doi.org/10.12688/f1000research.17731.1
Hill EL (2004) Executive dysfunction in autism. Trends Cogn Sci 8(1):26–32. https://doi.org/10.1016/j.tics.2003.11.003. Elsevier Ltd.
Lai MC, Lombardo MV, Baron-Cohen S (2014) Autism. The Lancet 383(9920):896–910. https://doi.org/10.1016/S0140-6736(13)61539-1
Knight MJ, Baune BT (2018) Cognitive dysfunction in major depressive disorder. Curr Opin Psychiatry 31(1):26–31. https://doi.org/10.1097/YCO.0000000000000378
Floresco SB, Magyar O (2006) Mesocortical dopamine modulation of executive functions: beyond working memory. Psychopharmacology (Berl) 188(4):567–585. https://doi.org/10.1007/s00213-006-0404-5
Salamone JD, Pardo M, Yohn SE, López-Cruz L, SanMiguel N, Correa M (2015) Mesolimbic dopamine and the regulation of motivated behavior. Curr Top Behav Neurosci 27:231–257. https://doi.org/10.1007/7854_2015_383
Baik J-H (2013) Dopamine signaling in reward-related behaviors. Front Neural Circuits 7:152. https://doi.org/10.3389/fncir.2013.00152
Gomes FV, Rincón-Cortés M, Grace AA (2016) Adolescence as a period of vulnerability and intervention in schizophrenia: insights from the MAM model. Neurosci Biobehav Rev:1–11. https://doi.org/10.1016/j.neubiorev.2016.05.030
Bunney BS, Walters JR, Roth RH, Aghajanian GK (1973) Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther 185(3):560–571
Aghajanian GK, Bunney BS (1973) Central dopaminergic neurons: neurophysiological identification and responses to drugs. Front Catech Res:643–648. https://doi.org/10.1016/B978-0-08-017922-3.50120-9
Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 4(11):2866–2876. https://doi.org/10.1523/JNEUROSCI.04-11-02866.1984
Hyland BI, Reynolds JNJ, Hay J, Perk CG, Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114(2):475–492. https://doi.org/10.1016/S0306-4522(02)00267-1
Goto Y, Otani S, Grace AA (2007) The Yin and Yang of dopamine release: a new perspective. Neuropharmacology 53(5):583–587. https://doi.org/10.1016/j.neuropharm.2007.07.007
Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13(3):900–913. https://doi.org/10.1523/JNEUROSCI.13-03-00900.1993
Tobler PN, Dickinson A, Schultz W (2003) Coding of predicted reward omission by dopamine neurons in a conditioned inhibition paradigm. J Neurosci 23(32):10402–10410. https://doi.org/10.1523/JNEUROSCI.23-32-10402.2003
Ungless MA, Magill PJ, Bolam JP (2004) Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science (80- ) 303(5666):2040–2042. https://doi.org/10.1126/SCIENCE.1093360/SUPPL_FILE/UNGLESS.SOM.PDF
Robinson MJF, Fischer AM, Ahuja A, Lesser EN, Maniates H (2016) Roles of ‘wanting’; and ‘liking’ in motivating behavior: gambling, food, and drug addictions. Curr Top Behav Neurosci 27:105–136. https://doi.org/10.1007/7854_2015_387
Everitt BJ, Robbins TW (2016) Drug addiction: updating actions to habits to compulsions ten years on. Annu Rev Psychol 67(1):23–50. https://doi.org/10.1146/annurev-psych-122414-033457
Chang CH, Grace AA (2014) Amygdala-ventral pallidum pathway decreases dopamine activity after chronic mild stress in rats. Biol Psychiatry 76(3):223–230. https://doi.org/10.1016/j.biopsych.2013.09.020
Palacios RD y, Verhoye M, Henningsen K, Wiborg O, Van der Linden A (2014) Diffusion kurtosis imaging and high-resolution MRI demonstrate structural aberrations of caudate putamen and amygdala after chronic mild stress. PLoS One 9(4):e95077. https://doi.org/10.1371/JOURNAL.PONE.0095077
Henry DJ, Greene MA, White FJ (1989) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: repeated administration. J Pharmacol Exp Ther 251(3):833–839
Wanat MJ, Willuhn I, Clark JJ, Phillips PEM (2009) Phasic dopamine release in appetitive behaviors and drug addiction. Curr Drug Abuse Rev 2:0–000
Tost H, Alam T, Meyer-Lindenberg A (2010) Dopamine and psychosis: theory, pathomechanisms and intermediate phenotypes. Neurosci Biobehav Rev 34(5):689–700. https://doi.org/10.1016/J.NEUBIOREV.2009.06.005
Grace AA (2010) Dopamine system dysregulation by the ventral subiculum as the common pathophysiological basis for schizophrenia psychosis, psychostimulant abuse, and stress. Neurotox Res 18(3–4):367–376. https://doi.org/10.1007/S12640-010-9154-6/FIGURES/3
Marinelli M, Cooper DC, Baker LK, White FJ (2003) Impulse activity of midbrain dopamine neurons modulates drug-seeking behavior. Psychopharmacology (Berl) 168(1–2):84–98. https://doi.org/10.1007/S00213-003-1491-1/FIGURES/10
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Perez-Valenzuela, E., Laviolette, S.R. (2023). Preclinical Models of THC and Nicotine Exposure During Adolescent Brain Development: Modeling Neuropsychiatric Phenotypes Related to Dopaminergic Transmission. In: Fuentealba-Evans, J.A., Henny, P. (eds) Dopaminergic System Function and Dysfunction: Experimental Approaches. Neuromethods, vol 193. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2799-0_9
Download citation
DOI: https://doi.org/10.1007/978-1-0716-2799-0_9
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-2798-3
Online ISBN: 978-1-0716-2799-0
eBook Packages: Springer Protocols