Skip to main content

Ultrastructural Study of Dopaminergic Axon Terminals

  • Protocol
  • First Online:
Dopaminergic System Function and Dysfunction: Experimental Approaches

Part of the book series: Neuromethods ((NM,volume 193))

  • 481 Accesses

Abstract

The way in which dopamine is released in the striatum is critical to its function, and a wide range of disorders are characterized by altered dopamine signaling, from Parkinson’s disease to an array of neuropsychiatric disorders. To fully comprehend the pathogenic pathways of dopamine disorders, it is essential that we investigate the subcellular modifications which underpin them. Research into the genetic variants of Parkinson’s disease has identified common pathways mediated by the mutated genes and their proteins, many of which have a role in vesicular function. A growing body of evidence suggests that neurodegeneration in Parkinson’s disease starts at the axon terminal and propagates backwards, ultimately resulting in the death of neurons in the substantia nigra pars compacta. Indeed, some of the early symptoms of Parkinson’s disease, preceding cell death, can be attributed to impaired synaptic transmission caused by alterations in proteins expressed at the axon terminal. In order to examine this, electron microscopy can be used, as it allows us to perform detailed analyses of the ultrastructure of dopaminergic terminals. The aim of this chapter is to provide a comprehensive protocol for the study of the ultrastructural features of dopaminergic axon terminals in the striatum, including terminal area, the length of the active zone, the number of vesicles, and vesicle distribution. This protocol provides detailed methods covering the preparation of the tissue, immunohistochemistry using gold labeling, preparation of sections for electron microscopy, examination of ultrathin sections using a transmission electron microscope, acquisition of digital electron microscope images, and detailed analyses of ultrastructure using freely available open-source software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iversen SD, Iversen LL (2007) Dopamine: 50 years in perspective. Trends Neurosci 30:188–193

    Article  CAS  Google Scholar 

  2. Beaulieu J-M, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  CAS  Google Scholar 

  3. Schultz W (2007) Multiple dopamine functions at different time courses. Annu Rev Neurosci 30:259–288

    Article  CAS  Google Scholar 

  4. Grace AA (2016) Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 17:524–532

    Article  CAS  Google Scholar 

  5. Nestler EJ, Carlezon WA (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59:1151–1159

    Article  CAS  Google Scholar 

  6. Berke JD, Hyman SE (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25:515–532

    Article  CAS  Google Scholar 

  7. Nutt DJ, Lingford-Hughes A, Erritzoe D et al (2015) The dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci 16:305–312

    Article  CAS  Google Scholar 

  8. Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and α-synuclein. Nat Rev Neurosci 3:932–942

    Article  CAS  Google Scholar 

  9. Singleton AB, Farrer M, Johnson J et al (2003) [alpha]-Synuclein locus triplication causes Parkinson’s disease. Science 302:841

    Article  CAS  Google Scholar 

  10. Esposito G, Clara FA, Verstreken P (2012) Synaptic vesicle trafficking and Parkinson’s disease. Dev Neurobiol 72:134–144

    Article  CAS  Google Scholar 

  11. Wong YC, Krainc D (2017) α-Synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med 23:1–13

    Article  CAS  Google Scholar 

  12. Ebanks K, Lewis PA, Bandopadhyay R (2020) Vesicular dysfunction and the pathogenesis of Parkinson’s disease: clues from genetic studies. Front Neurosci 13:1381

    Article  Google Scholar 

  13. Anwar S, Peters O, Millership S et al (2011) Functional alterations to the nigrostriatal system in mice lacking all three members of the synuclein family. J Neurosci 31:7264–7274

    Article  CAS  Google Scholar 

  14. Janezic S, Threlfell S, Dodson PD et al (2013) Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. Proc Natl Acad Sci 110:E4016–E4025

    Article  CAS  Google Scholar 

  15. Kosillo P, Doig NM, Ahmed KM et al (2019) Tsc1-mTORC1 signaling controls striatal dopamine release and cognitive flexibility. Nat Commun 10:1–19

    Article  CAS  Google Scholar 

  16. Connor-Robson N, Booth H, Martin JG et al (2019) An integrated transcriptomics and proteomics analysis reveals functional endocytic dysregulation caused by mutations in LRRK2. Neurobiol Dis 127:512–526

    Article  CAS  Google Scholar 

  17. Rueden CT, Schindelin J, Hiner MC et al (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18:529

    Article  Google Scholar 

  18. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  19. Larsson M, Bergersen LH, Gundersen V (2015) Immunogold electron microscopic quantification of small molecular compounds and proteins at synapses and other neural profiles. In: Merighi A, Lossi L (eds) Immunocytochemistry and related techniques. Springer, New York, pp 281–297

    Chapter  Google Scholar 

  20. Bolam JP (1992) Experimental neuroanatomy: a practical approach. IRL Press at Oxford University Press, Oxford/New York

    Google Scholar 

  21. Zhang J, Xiong H (2014) Brain tissue preparation, sectioning, and staining. In: Xiong H, Gendelman HE (eds) Current laboratory methods in neuroscience research. Springer, New York, pp 3–30

    Chapter  Google Scholar 

  22. Gage GJ, Kipke DR, Shain W (2012) Whole animal perfusion fixation for rodents. J Vis Exp (65):e3564

    Google Scholar 

  23. Tao-Cheng J-H, Gallant PE, Brightman MW et al (2007) Structural changes at synapses after delayed perfusion fixation in different regions of the mouse brain. J Comp Neurol 501:731–740

    Article  CAS  Google Scholar 

  24. Paxinos G, Franklin KBJ (2019) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates. Academic Press

    Google Scholar 

  25. Leica Microsystems Sectioning of Aluminum with Ultramicrotome Leica EM UC7. https://www.youtube.com/watch?v=p9vaiXq8T7Y

  26. Denise Gautreau How to Cut Thin Sections Using an Ultramicrotome. https://www.youtube.com/watch?v=Nl-pE667M0s

  27. Harris KM, Perry E, Bourne J et al (2006) Uniform serial sectioning for transmission electron microscopy. J Neurosci 26:12101–12103

    Article  CAS  Google Scholar 

  28. SynapseWeb, Kristen M. Harris, PI. http://synapseweb.clm.utexas.edu/. Serial Sectioning | SynapseWeb. https://synapseweb.clm.utexas.edu/serial-sectioning

  29. Yamaguchi M, Chibana H (2018) A method for obtaining serial ultrathin sections of microorganisms in transmission electron microscopy. J Vis Exp (131):e56235

    Google Scholar 

  30. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thank you to Lisa Conyers for writing and maintaining all our lab protocols so well. Thank you to Paul Bolam for instruction and editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie Doig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Doig, N., Larsson, M. (2023). Ultrastructural Study of Dopaminergic Axon Terminals. In: Fuentealba-Evans, J.A., Henny, P. (eds) Dopaminergic System Function and Dysfunction: Experimental Approaches. Neuromethods, vol 193. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2799-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2799-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2798-3

  • Online ISBN: 978-1-0716-2799-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics