Skip to main content

Expression and Crystallization of HDAC6 Tandem Catalytic Domains

  • Protocol
  • First Online:
HDAC/HAT Function Assessment and Inhibitor Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2589))

  • 1168 Accesses

Abstract

Histone deacetylase 6 (HDAC6) is an atypical lysine deacetylase with tandem catalytic domains and an ubiquitin-binding zinc finger domain. HDAC6 is involved in various biological processes, such as cell motility or stress responses, and has been implicated in pathologies ranging from cancer to neurodegeneration. Due to this broad range of functions, there has been considerable interest in developing HDAC6-specific small molecule inhibitors, several of which are already available. The crystal structure of the tandem catalytic domains of zebrafish HDAC6 has revealed an arrangement with twofold symmetry and extensive surface interaction between the catalytic domains. Further dissection of the biochemical properties of HDAC6 and the development of novel inhibitors will benefit from being able to routinely express high-quality protein. We present here our optimized protocol for expression and crystallization of the zebrafish tandem catalytic domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kouzarides T (2000) Acetylation: a regulatory modification to rival phosphorylation? EMBO J 19(6):1176–1179. https://doi.org/10.1093/emboj/19.6.1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Narita T, Weinert BT, Choudhary C (2019) Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol 20(3):156–174. https://doi.org/10.1038/s41580-018-0081-3

    Article  CAS  PubMed  Google Scholar 

  3. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42. https://doi.org/10.1038/nrg2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Seigneurin-Berny D, Verdel A, Curtet S, Lemercier C, Garin J, Rousseaux S, Khochbin S (2001) Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol Cell Biol 21(23):8035–8044. https://doi.org/10.1128/mcb.21.23.8035-8044.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kawaguchi Y, Kovacs J, McLauri A, Vance J, Ito A, Yao T (2003) The deacetylase HDAC6 regulates Aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727–738

    Article  CAS  Google Scholar 

  6. Kwon S, Zhang Y, Matthias P (2007) The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev 21(24):3381–3394. https://doi.org/10.1101/gad.461107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yu F, Ran J, Zhou J (2016) Ciliopathies: does HDAC6 represent a new therapeutic target? Trends Pharmacol Sci 37(2):114–119. https://doi.org/10.1016/j.tips.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  8. Magupalli V, Negro R, Tian Y, Hauenstein A, Di Caprio G, Skillern W, Deng Q, Orning P, Alam H, Maliga Z, Sharif H, Hu J, Evavold C, Kagan J, Schmidt F, Fitzgerald K, Kirchhausen T, Li Y, Wu H (2020) HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science 369(6510). https://doi.org/10.1126/science.aas8995

  9. Aldana-Masangkay GI, Sakamoto KM (2011) The role of HDAC6 in cancer. J Biomed Biotechnol 2011:875824. https://doi.org/10.1155/2011/875824

    Article  CAS  PubMed  Google Scholar 

  10. d'Ydewalle C, Bogaert E, Van Den Bosch L (2012) HDAC6 at the intersection of neuroprotection and neurodegeneration. Traffic 13(6):771–779. https://doi.org/10.1111/j.1600-0854.2012.01347.x

    Article  CAS  PubMed  Google Scholar 

  11. Banerjee I, Miyake Y, Nobs SP, Schneider C, Horvath P, Kopf M, Matthias P, Helenius A, Yamauchi Y (2014) Influenza A virus uses the aggresome processing machinery for host cell entry. Science 346(6208):473–477

    Article  CAS  Google Scholar 

  12. Zhang X, Yuan Z, Zhang Y, Yong S, Salas-Burgos A, Koomen J, Olashaw N, Parsons JT, Yang XJ, Dent SR, Yao TP, Lane WS, Seto E (2007) HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell 27(2):197–213. https://doi.org/10.1016/j.molcel.2007.05.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Janke C, Montagnac G (2017) Causes and consequences of microtubule acetylation. Curr Biol 27(23):R1287–R1292. https://doi.org/10.1016/j.cub.2017.10.044

    Article  CAS  PubMed  Google Scholar 

  14. Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL (2003) Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A 100(8):4389–4394. https://doi.org/10.1073/pnas.0430973100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saito M, Hess D, Eglinger J, Fritsch AW, Kreysing M, Weinert BT, Choudhary C, Matthias P (2019) Acetylation of intrinsically disordered regions regulates phase separation. Nat Chem Biol 15(1):51–61. https://doi.org/10.1038/s41589-018-0180-7

    Article  CAS  PubMed  Google Scholar 

  16. Hai Y, Christianson DW (2016) Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat Chem Biol 12(9):741–747. https://doi.org/10.1038/nchembio.2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miyake Y, Keusch JJ, Wang L, Saito M, Hess D, Wang X, Melancon BJ, Helquist P, Gut H, Matthias P (2016) Structural insights into HDAC6 tubulin deacetylation and its selective inhibition. Nat Chem Biol 12(9):748–754. https://doi.org/10.1038/nchembio.2140

    Article  CAS  PubMed  Google Scholar 

  18. Osko JD, Christianson DW (2019) Structural basis of catalysis and inhibition of HDAC6 CD1, the enigmatic catalytic domain of histone deacetylase 6. Biochemistry 58(49):4912–4924. https://doi.org/10.1021/acs.biochem.9b00934

    Article  CAS  PubMed  Google Scholar 

  19. Abdulrahman W, Uhring M, Kolb-Cheynel I, Garnier JM, Moras D, Rochel N, Busso D, Poterszman A (2009) A set of baculovirus transfer vectors for screening of affinity tags and parallel expression strategies. Anal Biochem 385(2):383–385. https://doi.org/10.1016/j.ab.2008.10.044

    Article  CAS  PubMed  Google Scholar 

  20. Osz-Papai J, Radu L, Abdulrahman W, Kolb-Cheynel I, Troffer-Charlier N, Birck C, Poterszman A (2015) Insect cells-baculovirus system for the production of difficult to express proteins. Methods Mol Biol (Clifton, NJ) 1258:181–205. https://doi.org/10.1007/978-1-4939-2205-5_10

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Matthias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Langousis, G., Sanchez, J., Kempf, G., Matthias, P. (2023). Expression and Crystallization of HDAC6 Tandem Catalytic Domains. In: Krämer, O.H. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 2589. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2788-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2788-4_30

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2787-7

  • Online ISBN: 978-1-0716-2788-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics